Cryogenic electron microscopy (cryo-EM) is among the most powerful tools available for interrogating nanoscale structure of biological materials. We recently showed that cryo-EM can be used to measure the bilayer thickness of lipid vesicles and biological membranes with subangstrom precision, resulting in the direct visualization of nanoscopic domains of different thickness in multicomponent lipid mixtures and giant plasma membrane vesicles. Despite the great potential of cryo-EM for revealing the lateral organization of biomembranes, a large parameter space of experimental conditions remains to be optimized. Here, we systematically investigate the influence of instrument parameters and image postprocessing steps on the ability to accurately measure bilayer thickness and discriminate regions of different thickness within unilamellar liposomes. This unique application of cryo-EM places particular demands on image acquisition optimization and analysis due to the facts that 1) each vesicle is a different size with different curvature, 2) the domains in each vesicle can be heterogenous in size, and 3) the random orientation of vesicles amplifies the variability of domain size in projected images. We also demonstrate a spatial autocorrelation analysis to extract additional information about lateral heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804012 | PMC |
http://dx.doi.org/10.1016/j.bpr.2022.100090 | DOI Listing |
Heliyon
January 2025
Department of Materials Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
AISI 316L stainless steel is extensively used in various fields, including medicine. In this study, in order to improve antibacterial properties, reduce elastic modulus, increase hydrophilicity and delay corrosion on the surface of AISI 316L stainless steel pieces for biomedical applications, zinc and magnesium elements were used for coating. Zn monolayer, Zn-Mg bilayer, and Zn-Mg-Zn triple coatings were deposited on AISI 316L substrates using the thermal evaporation method.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, 2000 Maribor, Slovenia.
Extracellular vesicles (EVs) are lipid bilayer-bound particles released from cells that cannot replicate on their own, play a crucial role in intercellular communication, and are implicated in various physiological and pathological processes. Within the domain of embryo culture media research, extensive studies have been conducted to evaluate embryo viability by analyzing spent culture medium. Advanced methodologies such as metabolomic profiling, proteomic and genomic analyses, transcriptomic profiling, non-coding RNA assessments, and oxidative status measurements have been employed to further understand the molecular characteristics of embryos and improve selection criteria for successful implantation.
View Article and Find Full Text PDFLangmuir
January 2025
R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan.
The adsorption behavior of an anionic surfactant, hydroxy alkane sulfonate with an alkyl chain length of 18 (C18HAS), from its hard water solution onto a mica surface and resulting lubrication properties were investigated. Because of the double chain-like chemical structure and aggregation behavior, C18HAS formed vesicles in hard water, which adsorbed onto a negatively charged mica surface via cation (Ca) bridging and then transformed into a bilayer film. The number of bilayers formed on the surface was evaluated by force curve measurements using an atomic force microscope (AFM), and the results showed a time-dependent increase of the number of adsorbed bilayers.
View Article and Find Full Text PDFSmall
January 2025
Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!