Intergenerational arsenic exposure on the mouse epigenome and metabolic physiology.

Environ Mol Mutagen

Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Sciences, Falcon Heights, Minnesota, USA.

Published: February 2023

Inorganic arsenic (iAs) is one of the largest toxic exposures to impact humanity worldwide. Exposure to iAs during pregnancy may disrupt the proper remodeling of the epigenome of F1 developing offspring and potentially their F2 grand-offspring via disruption of fetal primordial germ cells (PGCs). There is a limited understanding between the correlation of disease phenotype and methylation profile within offspring of both generations and whether it persists to adulthood. Our study aims to understand the intergenerational effects of in utero iAs exposure on the epigenetic profile and onset of disease phenotypes within F1 and F2 adult offspring, despite the lifelong absence of direct arsenic exposure within these generations. We exposed F0 female mice (C57BL6/J) to the following doses of iAs in drinking water 2 weeks before pregnancy until the birth of the F1 offspring: 1, 10, 245, and 2300 ppb. We found sex- and dose-specific changes in weight and body composition that persist from early time to adulthood within both generations. Fasting blood glucose challenge suggests iAs exposure causes dysregulation of glucose metabolism, revealing generational, exposure, and sex-specific differences. Toward understanding the mechanism, genome-wide DNA methylation data highlights exposure-specific patterns in liver, finding dysregulation within genes associated with cancer, T2D, and obesity. We also identified regions containing persistently differentially methylated CpG sites between F1 and F2 generations. Our results indicate the F1 developing embryos and their PGCs, which will result in F2 progeny, retain epigenetic damage established during the prenatal period and are associated with adult metabolic dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974848PMC
http://dx.doi.org/10.1002/em.22526DOI Listing

Publication Analysis

Top Keywords

arsenic exposure
8
ias exposure
8
exposure
6
ias
5
intergenerational arsenic
4
exposure mouse
4
mouse epigenome
4
epigenome metabolic
4
metabolic physiology
4
physiology inorganic
4

Similar Publications

Human exposure to arsenicals is associated with devastating diseases such as cancer and neurodegeneration. At the same time, arsenic-based drugs are used as therapeutic agents. The ability of arsenic to directly bind to proteins is correlated with its toxic and therapeutic effects highlighting the importance of elucidating arsenic-protein interactions.

View Article and Find Full Text PDF

Background: Salt usage patterns have been associated with a risk of multiple diseases; however, their relationship with heavy metal exposure has not been extensively studied.

Methods: This study analyzed survey data from 11,574 NHANES participants. Weighted linear regression models were used to examine the relationship between the type of salt used by participants, the frequency of adding salt at the table, and the frequency of adding regular or seasoned salt to cooking or food preparation, and urinary concentrations of 10 heavy metals.

View Article and Find Full Text PDF

From contamination to detection: The growing threat of heavy metals.

Heliyon

January 2025

Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo, 11835, Egypt.

Heavy metals like lead, mercury, cadmium, and arsenic are environmental pollutants that accumulate in ecosystems and pose significant health risks to humans and wildlife, primarily through food chain contamination where plants absorb heavy metals, affecting their growth and threatening consumer health. Cognitive and cardiovascular functions are particularly affected by exposure to heavy metals even at low concentrations through the induction of oxidative stress. Various analytical techniques are used in measuring heavy metals in different environmental and biological samples.

View Article and Find Full Text PDF

Reproductive toxicity and transgenerational effects of co-exposure to polystyrene microplastics and arsenic in zebrafish.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:

Microplastics (MPs) are ubiquitous environmental pollutants that have garnered significant attention due to their small particle size, resistance to degradation and large specific surface area, which makes it easy to adsorb various pollutants, particularly heavy metals. Arsenic (As), a common metal poisons, poses significant risks due to its widespread industrial use. When MPs and As co-exist in the environment, they can exert combined toxic effects on organisms, affecting various systems, including the nervous system.

View Article and Find Full Text PDF

Prenatal metal(loid) exposure and preterm birth: a systematic review of the epidemiologic evidence.

J Expo Sci Environ Epidemiol

January 2025

Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.

Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!