Hydrocarbon-contaminated land has been a significant issue throughout Nigeria's Niger Delta since the discovery of crude oil in 1956. This paper proposes a novel and sustainable technique involving soil solarization, phytoremediation and biosurfactant to treat polycyclic aromatic hydrocarbon (PAH) contamination. The treatment effect on PAH reduction, plant growth, rhizosphere microorganisms and their enzymatic activities was evaluated. Twenty-eight days of solarization was carried out before the introduction of Chromolaena odorata seedlings for an 84-day phytoremediation period using a 4 × 4 (vegetated) and 2 × 4 (non-vegetated) cell microcosms to simulate the Niger Delta's subtropical conditions. Soil solarization resulted in significant PAH reduction (p ≤ 0.01) of phenanthrene, fluoranthene and benzo(a)pyrene with means reduction of 60.0%, 38.7% and 36.1% compared to their non-solarized counterparts with 18.0%, 18.0% and 18.8% at 95% CI (32.7, 51.3), (15.4, 26.1) and (8.0, 26.6), respectively. In post-solarization, all solarized and vegetated treatment groups significantly reduced (p ≤ 0.01) PAHs compared to their respective counterparts, while biosurfactant contribution in this combination was negligible (p ≥ 0.05). The growth parameters of C. odorata, total soil/rhizosphere heterotrophic microorganisms and their enzymatic activities of dehydrogenase and urease increased in all solarized treatments indicating essential biochemical processes. The novel and successful integration of soil solarization and phytoremediation using indigenous C. odorata as a combined technique to treat even the most recalcitrant form of hydrocarbons (PAHs) brings up new opportunities for a sustainable method of cleaning up contaminated land in Nigeria's oil-rich Niger Delta.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232648 | PMC |
http://dx.doi.org/10.1007/s10653-022-01460-0 | DOI Listing |
Environ Geochem Health
June 2023
Department of Natural Science, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK.
Hydrocarbon-contaminated land has been a significant issue throughout Nigeria's Niger Delta since the discovery of crude oil in 1956. This paper proposes a novel and sustainable technique involving soil solarization, phytoremediation and biosurfactant to treat polycyclic aromatic hydrocarbon (PAH) contamination. The treatment effect on PAH reduction, plant growth, rhizosphere microorganisms and their enzymatic activities was evaluated.
View Article and Find Full Text PDFBraz J Microbiol
July 2019
Department of Microbiology, Delta State University, Abraka, Nigeria.
Comparative studies of enhanced rhizoremediation with biostimulation and bioaugmentation techniques in remediation of oil-contaminated mangrove environment were investigated. Contaminated soils at 7190 mg/kg of oil were subjected to the following treatments: soil (S), soil + oil (SO), soil + oil + fertilizer (NPK) (SOF), soil + oil + fertilizer + microorganisms (SOFM), soil + oil + fertilizer + microorganisms + solarization (SOFMS) (triplicates): two sets planted with P. australis, E.
View Article and Find Full Text PDFJ Environ Manage
October 2014
Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain.
Strategies for remediation of polluted soils are needed to accelerate the degradation and natural attenuation of pesticides. This study was conducted to assess the effect of solarization (S) and biosolarization (BS) during the summer season using organic wastes (composted sheep manure and sugar beet vinasse) for the bioremediation of soil containing residues of terbuthylazine and linuron. The results showed that both S and BS enhanced herbicide dissipation rates compared with the non-disinfected control, an effect which was attributed to the increased soil temperature and organic matter.
View Article and Find Full Text PDFJ Environ Sci Health B
August 2008
Department Calidad y Garantía Alimentaria, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain.
A greenhouse study was conducted to evaluate the effect of biofumigation (with sheep and chicken manure) combined with solarization on the dissipation of pesticides (pyrifenox, DDT and dieldrin), and on soil metals accumulation. The treatments consisted of a control, and soil disinfestations by biofumigation combined with solarization (B+S) for two, four, five, six consecutive years. B+S enhanced the dissipation of pyrifenox with regard to control treatment.
View Article and Find Full Text PDFBull Environ Contam Toxicol
July 2007
Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, 110012, India.
Lactofen, a member of the diphenyl ether chemical family, shows great potential for the control of broadleaf weeds associated with leguminous crops. It presents a high degree of selectivity when applied post-emergence to soybean and peanut crops. This paper presents the persistence of lactofen under a soybean crop under various conditions, including without remediation techniques, under soil solarization with polyethene sheets, and soil solarization followed by straw amendment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!