The nature and strength of intermolecular and surface forces are the key factors that influence the solvation, adhesion and wetting phenomena. The universal cohesive energy prediction equation based on conductor-like screening model (COSMO-UCE) was extended from like molecules (pure liquids) to unlike molecules (dissimilar liquids). A new molecular-thermodynamic model of interfacial tension (IFT) for liquid-liquid and solid-liquid systems was developed in this work, which can predict the surface free energy of solid materials and interfacial energy directly through cohesive energy calculations based on COSMO-UCE. The applications of this model in prediction of IFT for water-organic, solid (n-hexatriacontane, polytetrafluoroethylene (PTFE) and octadecyl-amine monolayer)-liquid systems have been verified extensively with successful results; which indicates that this is a straightforward and reliable model of surface and interfacial energies through predicting intermolecular interactions based on merely molecular structure (profiles of surface segment charge density), the dimensionless wetting coefficient R can characterize the wetting behavior (poor adhesive (non-wetting), wetting, spreading) of liquids on the surface of solid materials very well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202200801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!