Background/aim: Signal transducer and activator of transcription 3 (STAT3), Janus Kinase 1 (JAK1), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT) are essential for malignant transformation and progression in colorectal cancer (CRC) and can be considered as targets for therapeutic interventions. Hyperforin, an active constituent from Hypericum perforatum, has been reported to inhibit inflammation. However, whether hyperforin may suppress CRC progression via inactivation of JAK/STAT3, ERK or AKT signaling remains unclear.

Materials And Methods: Human CRC cells were used to identify the treatment efficacy of hyperforin and its underlying mechanisms of action by MTT, flow cytometry, wound healing, and western blotting assays.

Results: Hyperforin not only induced cytotoxicity, extrinsic/intrinsic apoptosis signaling, but also suppressed the invasion/migration ability of CRC. The phosphorylation of STAT3, JAK1, ERK and AKT was found to be decreased by hyperforin.

Conclusion: Hyperforin inactivates multiple oncogenic kinases and induces apoptosis signaling in CRC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843801PMC
http://dx.doi.org/10.21873/invivo.13067DOI Listing

Publication Analysis

Top Keywords

oncogenic kinases
8
kinases induces
8
induces apoptosis
8
colorectal cancer
8
erk akt
8
crc cells
8
apoptosis signaling
8
hyperforin
6
crc
5
hyperforin suppresses
4

Similar Publications

Silencing miR-126-5p protects trabecular meshwork cells against chronic oxidative injury by upregulating HSPB8 to activate PI3K/AKT pathway.

J Mol Histol

December 2024

Department of Ophthalmology, First Affilliated Hospital, Heilongjiang University of Chinese Medicine, No.26 Heping Road, Xiangfang District, Harbin, 150000, China.

Chronic oxidative stress (COS) is related to the pathophysiology of the trabecular meshwork (TM) in glaucoma. MicroRNAs (miRNAs) have a key role in the oxidative stress-mediated glaucoma. This work investigated the function of miR-126-5p in human trabecular meshwork cells (TMCs) under chronic oxidative stress (COS).

View Article and Find Full Text PDF

Development and validation of a radiomics nomogram for preoperative prediction of BRAF mutation status in adult patients with craniopharyngioma.

Neurosurg Rev

December 2024

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.

Although craniopharyngiomas are rare benign brain tumors primarily managed by surgery, they are often burdened by a poor prognosis due to tumor recurrence and long-term morbidity. In recent years, BRAF-targeted therapy has been promising, showing potential as an adjuvant or neoadjuvant approach. Therefore, we aim to develop and validate a radiomics nomogram for preoperative prediction of BRAF mutation in craniopharyngiomas.

View Article and Find Full Text PDF

Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.

View Article and Find Full Text PDF

TIPE () has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma.

View Article and Find Full Text PDF

Fucosterol, a Phytosterol of Marine Algae, Attenuates Immobilization-Induced Skeletal Muscle Atrophy in C57BL/6J Mice.

Mar Drugs

December 2024

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!