The final weeks of gestation represent a critical period for dairy cows that can determine the success of the subsequent lactation. Many physiological changes take place and additional exogenous stressors can alter the success of the transition into lactation. Moreover, this phase is pivotal for the final stage of intrauterine development of the fetus, which can have negative long-lasting postnatal effects. Heat stress is widely recognised as a threat to dairy cattle welfare, health, and productivity. Specifically, late gestation heat stress impairs the dam's productivity by undermining mammary gland remodelling during the dry period and altering metabolic and immune responses in early lactation. Heat stress also affects placental development and function, with relevant consequences on fetal development and programming. In utero heat stressed newborns have reduced birth weight, growth, and compromised passive immune transfer. Moreover, the liver and mammary DNA of in utero heat stressed calves show a clear divergence in the pattern of methylation relative to that of in utero cooled calves. These alterations in gene regulation might result in depressed immune function, as well as altered thermoregulation, hepatic metabolism, and mammary development jeopardising their survival in the herd and productivity. Furthermore, late gestation heat stress appears to exert multigenerational effects, influencing milk yield and survival up to the third generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/RD22209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!