Understanding interactions among flavor compounds from spices and myofibrillar proteins by multi-spectroscopy and molecular docking simulation.

Int J Biol Macromol

Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China. Electronic address:

Published: February 2023

Influence of the constant heating treatment on structural and adsorption properties of myofibrillar proteins (MPs) of chicken was investigated. The results showed that heat treatment enhanced the exposure of sulfhydryl groups and improved hydrophobicity of MPs surface. Particle size distribution of MPs significantly varied depending on heat treatment duration. Also, heat treatments resulted in significant changes in the α-helix and β-sheet structures of MPs. Besides, the MPs formed larger, irregular, and cluster-like aggregates after heat treatments. Moreover, heat treatments increased viscosity and surface roughness of MPs, while zeta potential value was reduced after heat treatments. Furhthermore, binding interactions between the MPs and spices flavors signifcanlty varied relying on nature of MPs and flavor compounds, as well as heat treatments duration. Amino acid residues were interacted with flavor compounds of spices via a variety of bonds and a stable MPs-flavors complex was performed. The obtained results provide a basis for understanding structural and physicochemical changes that occur in MPs during cooking and the interactions between MPs and flavors of spices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.312DOI Listing

Publication Analysis

Top Keywords

heat treatments
20
flavor compounds
12
mps
10
compounds spices
8
myofibrillar proteins
8
heat treatment
8
interactions mps
8
heat
7
treatments
5
understanding interactions
4

Similar Publications

Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.

View Article and Find Full Text PDF

An all-vanadium-based lithium-ion full battery is successfully assembled with hierarchical micro-nano yolk-shell structures VO and VO as the cathode and anode, which were obtained through a facile solvothermal method with heat treatment under different atmospheres. When used as the cathode of the lithium-ion battery, the hierarchical micro-nano yolk-shell VO demonstrated higher capacities than bulk VO, commercial LiFePO, and LiNiCoMnO cathodes at various current densities. The all-vanadium-based lithium-ion full battery shows good cycle performance at 0.

View Article and Find Full Text PDF

This paper presents a multiscale computational model, 'micro-to-meso-to-macro', to simulate polydopamine coated gold nanoparticles (AuNP@PDA) for assisted tumor photothermal therapy (PTT). The optical properties, mainly refractive index, of the PDA unit molecules are calculated using the density functional theory (DFT) method in this multiscale model. Subsequently, the thermodynamic properties, including thermal conductivity and heat capacity, of the PDA cells and AuNP@PDA particles are calculated using molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

The fully bio-based bilayered flame retardant treatment for paper via natural bio-materials.

Front Chem

December 2024

School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.

In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.

View Article and Find Full Text PDF

Our study aims to assess the thermal inactivation of non-proteolytic type B spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D value was estimated to be 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!