Expression in Pichia pastoris of human antibody fragments that neutralize venoms of Mexican scorpions.

Toxicon

Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico. Electronic address:

Published: February 2023

The methylotrophic yeast Pichia pastoris has been one of the most widely used organisms in recent years as an expression system for a wide variety of recombinant proteins with therapeutic potential. Its popularity as an alternative system to Escherichia coli is mainly due to the easy genetic manipulation and the ability to produce high levels of heterologous proteins, either intracellularly or extracellularly. Being a eukaryotic organism, P. pastoris carries out post-translational modifications that allow it to produce soluble and correctly folded recombinant proteins. This work, evaluated the expression capacity in P. pastoris of two single-chain variable fragments (scFvs) of human origin, 10FG2 and LR. These scFvs were previously obtained by directed evolution against scorpion venom toxins and are able to neutralize different toxins and venoms of Mexican species. The yield obtained in P. pastoris was higher than that obtained in bacterial periplasm (E. coli), and most importantly, biochemical and functional properties were not modified. These results confirm that P. pastoris yeast can be a good expression system for the production of antibody fragments of a new recombinant antivenom.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2022.107012DOI Listing

Publication Analysis

Top Keywords

pichia pastoris
8
antibody fragments
8
venoms mexican
8
expression system
8
recombinant proteins
8
pastoris
6
expression
4
expression pichia
4
pastoris human
4
human antibody
4

Similar Publications

Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.

View Article and Find Full Text PDF

Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine.

Glycobiology

January 2025

Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, OX1 3QU, United Kingdom.

Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P.

View Article and Find Full Text PDF

Promoted expression of a lipase for its application in EPA/DHA enrichment and mechanistic insights into its substrate specificity.

Int J Biol Macromol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200% in the secretion level and the volumetric activity.

View Article and Find Full Text PDF

Microbial Astaxanthin Synthesis by through Metabolic and Fermentation Engineering.

J Agric Food Chem

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China.

Astaxanthin is a kind of carotenoid with a strong antioxidant ability, which has shown broad applications in the areas of healthcare, medicine, cosmetics, food additives, and aquaculture. With the increasing demand for natural products, the microbial production of astaxanthin has become a new hot spot. In this study, the astaxanthin synthesis pathway was first metabolically constructed in ()().

View Article and Find Full Text PDF

N-glycosylation-modifications-driven conformational dynamics attenuate substrate inhibition of d-lactonohydrolase.

Bioorg Chem

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 China. Electronic address:

Achieving enzyme catalysis at high substrate concentrations is a substantial challenge in industrial biocatalysis, and the role of glycosylation in post-translational modifications that modulate enzyme substrate inhibition remains poorly understood. This study provides insights into the role of N-glycosylation in substrate inhibition by comparing the catalytic properties of d-lactonohydrolase (d-Lac) derived from Fusarium moniliforme expressed in prokaryotic and eukaryotic hosts. Experimental evidence indicates that recombinant d-Lac expressed in Pichia pastoris (PpLac-WT) exhibits higher hydrolysis rates at a substrate concentration of 400 g/L, with reduced substrate inhibition and enhanced stability compared to the recombinant d-Lac expressed in Escherichia coli (EcLac-WT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!