Detection of 1-OHPyr in human urine using SERS with injection under wet liquid-liquid self-assembled films of β-CD-coated gold nanoparticles and deep learning.

Spectrochim Acta A Mol Biomol Spectrosc

Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, People's Republic of China; National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, People's Republic of China. Electronic address:

Published: April 2023

1-Hydroxypyrene (1-OHPyr), a typical hydroxylated polycyclic aromatic hydrocarbon (OH-PAH), has been commonly regarded as a urinary biomarker for assessing human exposure and health risks of PAHs. Herein, a fast and sensitive method was developed for the determination of 1-OHPyr in urine using surface-enhanced Raman spectroscopy (SERS) combined with deep learning (DL). After emulsification, urinary 1-OHPyr was separated using simple liquid-liquid extraction. Gold nanoparticles with β-cyclodextrin (β-CD@AuNPs) were synthesized, and homogeneous and ordered β-CD@AuNP films were prepared through a liquid-liquid interface self-assembly process. The separated 1-OHPyr was injected under wet assembled films for SERS detection. Concentration as low as 0.05 μg mL of 1-OHPyr in urine could still be detected, and the relative standard deviation was 5.5 %, and this was ascribed to the adsorption of β-CD and the high-probability contact between 1-OHPyr molecules and the nanogap of assembled films under the action of capillary force. Meanwhile, a convolutional neural network (CNN), a classical DL network architecture, was adopted to build the prediction model, and the model was further simplified by genetic algorithm (GA). CNN combined with a GA obtained optimized results with determination coefficient and a root mean square error of prediction sets of 0.9639 and 0.6327, respectively, outperforming other models. Overall, the proposed method achieves fast and accurate detection of 1-OHPyr in urine, improves the assessment human exposure to PAHs and is expected to have applications in the analysis of other OH-PAHs in complex environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.122238DOI Listing

Publication Analysis

Top Keywords

1-ohpyr urine
12
detection 1-ohpyr
8
gold nanoparticles
8
deep learning
8
human exposure
8
assembled films
8
1-ohpyr
7
1-ohpyr human
4
urine
4
human urine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!