Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scintillators enable invisible X-ray to be converted into ultraviolet (UV)/visible light that can be collected using a sensor array and is the core component of the X-ray imaging system. However, combining the excellent properties of high light output, high spatial resolution, flexibility, non-toxicity, and cost effectiveness into a single X-ray scintillator remains a great challenge. Herein, a novel scintillator based on benzyltriphenylphosphonium manganese(II) bromide (BTPMnBr) nanocrystal (NC) membranes was developed by the in situ fabrication strategy. The long Mn-Mn distance provided by the large BTP cation allows the nonradiative energy dissipation in this manganese(II) halide to be significantly suppressed. As a result, the flexible BTPMnBr NC scintillator shows an excellent linear response to the X-ray dose rate, a high light yield of ∼71,000 photon/MeV, a low detection limit of 86.2 nGy/s at a signal-to-noise ratio of 3, a strong radiation hardness, and a long-term thermal stability. Thanks to the low Rayleigh scattering associated with the dense distribution of nanometer-scale emitters, light cross-talk in X-ray imaging is greatly suppressed. The impressively high-spatial resolution X-ray imaging (23.8 lp/mm at modulation transfer function = 0.2 and >20 lp/mm for a standard pattern chart) was achieved on this scintillator. Moreover, well-resolved 3D dynamic rendering X-ray projections were also successfully demonstrated using this scintillator. These results shed light on designing efficient, flexible, and eco-friendly scintillators for high-resolution X-ray imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c16554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!