Plaque psoriasis is a systemic immune-mediated disease driven by interleukin-17 producing cells under the regulation of interleukin-23. Interleukin-23 signaling is mediated by the intracellular kinase tyrosine kinase 2, a Janus kinase family member. Tyrosine kinase 2 is a potential target for oral small-molecule therapies to treat psoriasis and psoriatic arthritis. A number of tyrosine kinase 2 inhibitors are in development or approved for the treatment of psoriasis or psoriatic arthritis. Deucravacitinib, an oral, selective, allosteric tyrosine kinase 2 inhibitor, is approved by the US Food and Drug Administration as a first-in-class treatment for adults with moderate-to-severe plaque psoriasis who are candidates for systemic therapy or phototherapy, and is approved by Pharmaceuticals and Medical Devices Agency (PDMA) in Japan for patients with plaque psoriasis, generalized pustular psoriasis, and erythrodermic psoriasis who have had an inadequate response to conventional therapies. Deucravacitinib selectively binds to the unique tyrosine kinase 2 regulatory pseudokinase domain in an allosteric fashion, preventing a conformational change in the catalytic domain required for ATP substrate binding, thus effectively locking tyrosine kinase 2 in an inactive state. Two other tyrosine kinase 2 inhibitors in later stage clinical development, brepocitinib (PF-06700841) and ropsacitinib (PF-06826647), are orthosteric inhibitors that target the highly conserved catalytic domain. This selective allosteric tyrosine kinase 2 inhibition may explain the improved safety profile of deucravacitinib versus orthosteric Janus kinase and tyrosine kinase 2 inhibitors. Two phase 3 psoriasis trials demonstrated deucravacitinib was efficacious and not associated with safety concerns characteristic of Janus kinase inhibitors, hence the new class designation (TYK2 inhibitor) by health authorities in the USA and Japan. Allosteric tyrosine kinase 2 inhibitors represent a promising new class of molecules for the treatment of psoriasis and psoriatic arthritis, and longer-term trials will establish their place in therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884727 | PMC |
http://dx.doi.org/10.1007/s13555-022-00878-9 | DOI Listing |
J Exp Med
March 2025
Institute of Cancer Research, Shenzhen Bay Laboratory , Shenzhen, China.
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114.
Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037-1002.
Nutritional status is a determining factor for growth during development and homeostatic maintenance in adulthood. In the context of muscle, growth hormone (GH) coordinates growth with nutritional status; however, the detailed mechanisms remain to be fully elucidated. Here, we show that the transcriptional repressor B cell lymphoma 6 (BCL6) maintains muscle mass by sustaining GH action.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany.
Gastrointestinal stromal tumors (GIST), driven by KIT and PDGFRA mutations, are the most common mesenchymal tumors of the gastrointestinal tract. Although tyrosine kinase inhibitors (TKIs) have advanced treatment, resistance mutations and off-target toxicity limit their efficacy. This study develops covalent TKIs targeting drug-resistant GIST through structure-based design, synthesis, and biological evaluation.
View Article and Find Full Text PDFElife
January 2025
Université Paris Cité, Institut Pasteur, AP-HP, Inserm, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reconnect, Progressive Sensory Disorders, Pathophysiology and Therapy Unit, Paris, France.
The DYRK1A enzyme is a pivotal contributor to frequent and severe episodes of otitis media in Down syndrome, positioning it as a promising target for therapeutic interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!