Bioreduction of Cr(VI) is cost-effective and environmentally friendly, however, the slow bioreduction rate limits its application. In this study, the potential synergistic enhancement of Cr(VI) bioreduction by shewanella oneidensis MR-1 (S. oneidensis) with goethite and riboflavin (RF) was investigated. The results showed that the S. oneidensis reaction system reduce 29.2% of 20 mg/L Cr(VI) after 42 h reaction, while the S. oneidensis/goethite/RF reaction system increased the Cr(VI) reduction rate to 87.74%. RF as an efficient electron shuttle and Fe(II) from goethite bioreduction were identified as the crucial components in Cr(VI) reduction. XPS analysis showed that the final precipitates of Cr(VI) reduction were Cr(CHC(O)CHC(O)CH) and CrO and adhered to the bacterial cell surface. In this process, the microbial surface functional groups such as hydroxyl and carboxyl groups participated in the adsorption and reduction of Cr(VI). Meanwhile, an increase in cytochrome c led to an increase in electron transfer system activity (ETSA), causing a significant enhancement in extracellular electron transfer efficiency. This study provides insight into the mechanism of Cr(VI) reduction in a complex environment where microorganisms, iron minerals and RF coexist, and the synergistic treatment method of Fe(III) minerals and RF has great potential application for Cr(VI) detoxification in aqueous environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10532-022-10010-5DOI Listing

Publication Analysis

Top Keywords

crvi reduction
20
crvi
10
goethite riboflavin
8
shewanella oneidensis
8
oneidensis mr-1
8
reaction system
8
electron transfer
8
reduction
6
riboflavin synergistically
4
synergistically enhance
4

Similar Publications

Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia.

J Hazard Mater

December 2024

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:

Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.

View Article and Find Full Text PDF

The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5-7), initial Cr(VI) concentration (10-50 mg/L), contact time (10-45 min), and adsorbent dosage (0.

View Article and Find Full Text PDF

To tackle the challenges of increasing the efficiency of photocatalysts, a ternary magnetic heterojunction photocatalyst containing spinel cobalt and zinc ferrites, and zeolite (CZZ) was designed and fabricated. The physicochemical properties of the novel photocatalyst were verified using characterization techniques such as XRD, FT-IR, FE-SEM, EDS mapping, N adsorption-desorption, VSM, PL, and UV-Vis DRS. The CZZ photocatalyst exhibited a significant Cr (VI) reduction rate of 0.

View Article and Find Full Text PDF

The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).

View Article and Find Full Text PDF

Superior selectivity for efficiently reductive degradation of hydrophobic organic pollutants in strongly competitive systems.

J Hazard Mater

December 2024

Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.

Highly toxic halo-/nitro-substituted organics, often in low concentrations and with high hydrophobicity, make it difficult to obtain electrons for reduction when strongly electron-competing substances (e.g., O, H/HO, NO) coexist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!