Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 177
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 177
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 251
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3125
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cells of Saccharomyces cerevisiae are capable for phosphate surplus: the increased uptake of phosphate (Pi) and accumulation of inorganic polyphosphate (polyP) occur when the cells after Pi limitation were cultivated in a medium supplemented with Pi. We demonstrated that single knockout mutations in the PHO84, PHO87, and PHO89 genes encoding plasma membrane phosphate transporters suppressed the Pi uptake and polyP accumulation under phosphate surplus at nitrogen starvation. The knockout strains in the PHM6 and PHM7 genes encoding unannotated PHO-proteins showed decreased polyP accumulation under Pi surplus both at nitrogen starvation and in complete YPD medium. This is due to the suppression of Pi uptake in the cells of these mutant strains. We speculate that Pi transporters of plasma membrane, and Phm6 and Phm7 proteins function in concert providing increased Pi uptake at phosphate surplus conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-022-03394-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!