Coronary heart disease is the leading cause of death globally. Complete cessation of blood flow in coronary arteries causes ST-segment elevation myocardial infarction (STEMI), resulting in cardiogenic shock and fatal arrhythmia, which are associated with high mortality. Primary coronary intervention (PCI) for recanalizing the coronary artery significantly improves the outcomes of STEMI, but advancements made in shortening the door-to-balloon time have failed to reduce in-hospital mortality, suggesting that additional therapeutic strategies are required. Left anterior descending coronary artery (LAD) ligation in rats is an animal model for acute myocardial IR research that is comparable to the clinical scenario in which rapid coronary recanalization through PCI is used for STEMI; however, PCI-induced STEMI is a technically challenging and complicated operation associated with high mortality and great variation in infarction size. We identified the ideal position for LAD ligation, created a gadget to control a snare loop, and supported a modified surgical maneuver, thereby reducing tissue damage, to establish a reliable and reproducible acute myocardial ischemia-reperfusion (IR) research protocol for rats. We also propose a method for validating the quality of study results, which is a critical step for determining the accuracy of subsequent biochemical analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/63921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!