Double Asymmetric Core Optimizes Crystal Packing to Enable Selenophene-based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells.

Angew Chem Int Ed Engl

Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Published: March 2023

Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D A'D -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202216340DOI Listing

Publication Analysis

Top Keywords

double asymmetric
12
crystal packing
8
organic solar
8
solar cells
8
asymmetric
5
asymmetric core
4
core optimizes
4
optimizes crystal
4
packing enable
4
enable selenophene-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!