Obesity-induced changes in gene expression in feline adipose and skeletal muscle tissue.

J Anim Physiol Anim Nutr (Berl)

Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.

Published: September 2023

Indoor-confined cats are prone to developing obesity due to a sedentary life and an energy intake exceeding energy requirements. As in humans, feline obesity decreases insulin sensitivity and increases the risk of developing feline diabetes mellitus, but the pathophysiological mechanisms are currently poorly understood. Human obesity-related metabolic alterations seem to relate to changes in the expression of genes involved in glucose metabolism, insulin action and inflammation. The objective of the current study was to investigate changes in the expression of genes relating to obesity, glucose metabolism and inflammation in cats with non-experimentally induced obesity. Biopsies from the sartorius muscle and subcutaneous adipose tissue were obtained from 73 healthy, neutered, indoor-confined domestic shorthaired cats ranging from lean to obese. Quantification of obesity-related gene expression levels relative to glyceraldehyde-3-phosphate dehydrogenase was performed by quantitative real-time polymerase chain reaction. A negative association between obesity and adiponectin expression was observed in the adipose tissue (mean ± SD; normal weight, 27.30 × 10  ± 77.14 × 10 ; overweight, 2.89 × 10  ± 0.38 × 10 and obese, 2.93 × 10  ± 4.20 × 10 , p < 0.05). In muscle, the expression of peroxisome proliferative activated receptor-γ2 and plasminogen activator inhibitor-1 was increased in the obese compared to the normal-weight cats, and resistin was increased in the normal-weight compared to the overweight cats. There were no detectable obesity-related changes in the messenger RNA levels of inflammatory cytokines. In conclusion, a possible obesity-related low-grade inflammation caused by increased expression of key proinflammatory regulators was not observed. This could imply that the development of feline obesity and ensuing insulin resistance may not be based on tissue-derived inflammation, but caused by several determining factors, many of which still need further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpn.13802DOI Listing

Publication Analysis

Top Keywords

gene expression
8
changes expression
8
expression genes
8
glucose metabolism
8
adipose tissue
8
expression
5
obesity
5
obesity-induced changes
4
changes gene
4
expression feline
4

Similar Publications

Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light.

View Article and Find Full Text PDF

Valine Restriction Extends Survival in a Drosophila Model of Short-Chain Enoyl-CoA Hydratase 1 (ECHS1) Deficiency.

J Inherit Metab Dis

January 2025

Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.

Short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare genetic disorder caused by biallelic pathogenic variants in the ECHS1 gene. ECHS1D is characterised by severe neurological and physical impairment that often leads to childhood mortality. Therapies such as protein and single nutrient-restricted diets show poor efficacy, whereas the development of new treatments is hindered by the low prevalence of the disorder and a lack of model systems for treatment testing.

View Article and Find Full Text PDF

The role of sonic hedgehog signaling in the oropharyngeal epithelium during jaw development.

Congenit Anom (Kyoto)

December 2024

Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.

Sonic hedgehog (Shh) is expressed in the oropharyngeal epithelium, including the frontonasal ectodermal zone (FEZ), which is defined as the boundary between Shh and Fgf8 expression domains in the frontonasal epithelium. To investigate the role of SHH signaling from the oropharyngeal epithelium, we generated mice in which Shh expression is specifically deleted in the oropharyngeal epithelium (Isl1-Cre; Shh). In the mutant mouse, Shh expression was excised in the oropharyngeal epithelium as well as FEZ and ventral forebrain, consistent with the expression pattern of Isl1.

View Article and Find Full Text PDF

Objective: To explore the association between smoking, genetic susceptibility and early menopause (EM) and clarify the potential mechanisms underlying this relationship.

Design: An observational and Transcriptome-wide association analysis (TWAS) study.

Setting: UK Biobank and public summary statistics.

View Article and Find Full Text PDF

Generation of transgenic chicken through ovarian injection.

Animal Model Exp Med

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!