Chirality-Dependent Tumor Phototherapy Using Amino Acid-Engineered Chiral Phosphorene.

ACS Appl Mater Interfaces

Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China.

Published: January 2023

Phosphorene, also known as black phosphorus nanosheet (BPNS), has been investigated as a nanoagent for tumor therapy. However, promoting its intracellular accumulation while preventing the cytoplasmic decomposition remains challenging. Herein, for the first time, we propose a chiral BPNS designed through surface engineering based on amino acids with high biocompatibility and an abundant source for application in chirality-dependent tumor phototherapy based on its intracellular metabolism. The advantage of using cysteine (Cys) over other amino acids was that its d, l, or dl-form could efficiently work as the chirality inducer to modify the BPNS through electrostatic interaction and prevent alterations in the intrinsic properties of the BPNS. In particular, d-Cys-BPNS displayed an approximately threefold cytotoxic effect on tumor cells compared with l-Cys-BPNS, demonstrating a chirality-dependent therapy behavior. d-Cys-BPNS not only promoted high intracellular content but also showed resistance to cytoplasmic decomposition. Cys-engineered BPNS also demonstrated chirality-dependent phototherapy effects on tumor-bearing mice, in proximity to the results . Chiral engineering is expected to open new avenues that could promote the use of BPNS in tumor phototherapy and boost chiral nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c19291DOI Listing

Publication Analysis

Top Keywords

tumor phototherapy
12
chirality-dependent tumor
8
cytoplasmic decomposition
8
amino acids
8
bpns
6
chirality-dependent
4
phototherapy
4
phototherapy amino
4
amino acid-engineered
4
chiral
4

Similar Publications

Background: Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area.

Objective: The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX).

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is emerging as a promising treatment for many diseases. This non-invasive approach uses photosensitizing agents and light to selectively destroy abnormal cells, providing a valuable alternative to traditional treatments. Scientists are investigating the use of PDT in various areas of the head, and their work is focused on a growing number of new discoveries and methods for treating cancer.

View Article and Find Full Text PDF

Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.

View Article and Find Full Text PDF

The probiotic strain Nissle 1917 (EcN) with high biocompatibility and susceptibility to genetic modification is often applied in bacterial therapies for cancer. However, most studies have used plasmids as vectors to construct engineering strains from EcN. Plasmid-based expression systems suffer from genetic instability, and they need antibiotic selective pressure to maintain high copy number.

View Article and Find Full Text PDF

Recent advances of photodiagnosis and treatment for head and neck squamous cell carcinoma.

Neoplasia

December 2024

Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China. Electronic address:

Head and neck squamous cell carcinoma (HNSCC) are the most common type of head and neck tumor that severely threatens human health due to its highly aggressive nature and susceptibility to distant metastasis. The diagnosis of HNSCC currently relies on biopsy and histopathological examination of suspicious lesions. However, the early mucosal changes are subtle and difficult to detect by conventional oral examination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!