Accumulating evidence underscores the large role played by the environment in the health of communities and individuals. We review the currently known contribution of environmental exposures and pollutants on kidney disease and its associated morbidity. We review air pollutants, such as particulate matter; water pollutants, such as trace elements, per- and polyfluoroalkyl substances, and pesticides; and extreme weather events and natural disasters. We also discuss gaps in the evidence that presently relies heavily on observational studies and animal models, and propose using recently developed analytic methods to help bridge the gaps. With the expected increase in the intensity and frequency of many environmental exposures in the decades to come, an improved understanding of their potential effect on kidney disease is crucial to mitigate potential morbidity and mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802544 | PMC |
http://dx.doi.org/10.34067/KID.0007962021 | DOI Listing |
Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.
View Article and Find Full Text PDFEur J Prev Cardiol
January 2025
Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
Aims: Exposure to air pollution including diesel engine exhaust (DEE) is associated with increased risk of acute myocardial infarction (AMI). Few studies have investigated the risk of AMI according to occupational exposure to DEE. The aim of this study was to evaluate the association between occupational exposure to DEE and the risk of first-time AMI.
View Article and Find Full Text PDFInt J Environ Health Res
January 2025
Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
Few epidemiological studies have investigated associations between anthropogenic heat emissions (AE) and serum lipids. We recruited 15,477 adults from 33 communities in northeastern China in 2009. We estimated AE flux by using data on energy consumption and socio-economic statistics covering building, transportation, industry, and human metabolism.
View Article and Find Full Text PDFObes Rev
January 2025
Inserm UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (N-G-ERE), University of Lorraine, Nancy, France.
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Aquaculture Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!