Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, a complex experimental study of the effect of electron and proton ionizing radiation on the properties of carbon nanowalls (CNWs) is carried out using various state-of-the-art materials characterization techniques. CNW layers on quartz substrates were exposed to 5 MeV electron and 1.8 MeV proton irradiation with accumulated fluences of 7 × 10 e/cm and 10 p/cm, respectively. It is found that depending on the type of irradiation (electron or proton), the morphology and structural properties of CNWs change; in particular, the wall density decreases, and the sp hybridization component increases. The morphological and structural changes in turn lead to changes in the electronic, optical, and electrical characteristics of the material, in particular, change in the work function, improvement in optical transmission, an increase in the surface resistance, and a decrease in the specific conductivity of the CNW films. Lastly, this study highlights the potential of CNWs as nanostructured functional materials for novel high-performance radiation-resistant electronic and optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798766 | PMC |
http://dx.doi.org/10.1021/acsomega.2c06735 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!