(1) Purpose: To develop a mathematical model combining physiologically based pharmacokinetic and urinary glucose excretion (PBPK-UGE) to simultaneously predict pharmacokinetic (PK) and UGE changes of luseogliflozin (LUS) as well as to explore the role of sodium-glucose cotransporters (SGLT1 and SGLT2) in renal glucose reabsorption (RGR) in humans. (2) Methods: The PBPK-UGE model was built using physicochemical and biochemical properties, binding kinetics data, affinity to SGLTs for glucose, and physiological parameters of renal tubules. (3) Results: The simulations using this model clarified that SGLT1/2 contributed 15 and 85%, respectively, to RGR in the absence of LUS. However, in the presence of LUS, the contribution proportion of SGLT1 rose to 52-76% in healthy individuals and 55-83% in T2DM patients, and that of SGLT2 reduced to 24-48 and 17-45%, respectively. Furthermore, this model supported the underlying mechanism that only 23-40% inhibition of the total RGR with 5 mg of LUS is resulted from SGLT1's compensatory effect and the reabsorption activity of unbound SGLT2. (4) Conclusion: This PBPK-UGE model can predict PK and UGE in healthy individuals and T2DM patients and can also analyze the contribution of SGLT1/2 to RGR with and without LUS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798748PMC
http://dx.doi.org/10.1021/acsomega.2c06483DOI Listing

Publication Analysis

Top Keywords

urinary glucose
8
glucose excretion
8
explore role
8
renal glucose
8
glucose reabsorption
8
pbpk-uge model
8
healthy individuals
8
t2dm patients
8
rgr lus
8
glucose
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!