Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we report the development of antibacterial and compostable electrospun polylactic acid (PLA) fibers by incorporation of a multifunctional biobased polymer in the process. The multifunctional polymer was synthesized from the bio-sourced itaconic acid building block by radical polymerization followed by click chemistry reaction with hydantoin groups. The resulting polymer possesses triazole and hydantoin groups available for further N-alkylation and chlorination reaction, which provide antibacterial activity. This polymer was added to the electrospinning PLA solution at 10 wt %, and fiber mats were successfully prepared. The obtained fibers were surface-modified through the accessible functional groups, leading to the corresponding cationic triazolium and -halamine groups. The fibers with both antibacterial functionalities demonstrated high antibacterial activity against Gram-positive and Gram-negative bacteria. While the fibers with cationic surface groups are only effective against Gram-positive bacteria ( and ), upon chlorination, the activity against Gram-negative and is significantly improved. In addition, the compostability of the electrospun fibers was tested under industrial composting conditions, showing that the incorporation of the antibacterial polymer does not impede the disintegrability of the material. Overall, this study demonstrates the feasibility of this biobased multifunctional polymer as an antibacterial agent for biodegradable polymeric materials with potential application in medical uses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799243 | PMC |
http://dx.doi.org/10.1021/acsapm.2c00928 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!