In this study, the molecular structures of nicotine and caffeine molecule have been generated using the 6-311++G(d,p) basis set in the DFT/B3LYP method. The molecules were optimized on the same basis set and their minimum stable energy was calculated. The HOMO-LUMO energies were calculated to establish the kinetic stability and chemical reactivity of the chosen compounds. The variation of energy and its gap were closely studied for both nicotine and caffeine in the presence of solvent water as well. Similarly, vibrational spectroscopy was studied at the most prominent region in both gas phase and solvent water with their respective TED assignments. The shifting of frequency clearly indicates the impact of solvent water and isotopic substitution of carbon atoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801112 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e12494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!