In recent years, Alzheimer's disease (AD) diagnosis using neuroimaging and deep learning has drawn great research attention. However, due to the scarcity of training neuroimaging data, many deep learning models have suffered from severe overfitting. In this study, we propose an ensemble learning framework that combines deep learning and machine learning. The deep learning model was based on a 3D-ResNet to exploit 3D structural features of neuroimaging data. Meanwhile, Extreme Gradient Boosting (XGBoost) machine learning was applied on a voxel-wise basis to draw the most significant voxel groups out of the image. The 3D-ResNet and XGBoost predictions were combined with patient demographics and cognitive test scores (Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR)) to give a final diagnosis prediction. Our proposed method was trained and validated on brain MRI brain images of the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. During the training phase, multiple data augmentation methods were employed to tackle overfitting. Our test set contained only baseline scans, i.e., the first visit scans since we aimed to investigate the ability of our approach in detecting AD during the first visit of AD patients. Our 5-fold cross-validation implementation achieved an average AUC of 100% during training and 96% during testing. Using the same computer, our method was much faster in scoring a prediction, approximately 10 min, than feature extraction-based machine learning methods, which often take many hours to score a prediction. To make the prediction explainable, we visualized the brain MRI image regions that primarily affected the 3D-ResNet model's prediction via heatmap. Lastly, we observed that proper generation of test sets was critical to avoiding the data leakage issue and ensuring the validity of results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795286PMC
http://dx.doi.org/10.1016/j.ibneur.2022.08.010DOI Listing

Publication Analysis

Top Keywords

machine learning
16
deep learning
16
alzheimer's disease
12
learning
9
ensemble learning
8
learning deep
8
neuroimaging data
8
brain mri
8
deep
5
prediction
5

Similar Publications

Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.

Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

AbbVie Inc., North Chicago, IL, USA.

Background: In Alzheimer's Disease (AD) trials, clinical scales are used to assess treatment effect in patients. Minimizing statistical uncertainty of trial outcomes is an important consideration to increase statistical power. Machine learning models can leverage baseline data to create AI-generated digital twins - individualized predictions (or prognostic scores) of how each patient's clinical outcomes may change during a trial assuming they received placebo.

View Article and Find Full Text PDF

Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Imperial College London, London, United Kingdom; UK Dementia Research Institute, Care Research and Technology Centre, London, United Kingdom.

Background: Close to 23% of unplanned hospital admissions for people living with dementia (PLWD) are due to potentially preventable causes such as severe urinary tract infections (UTIs), falls, and respiratory problems. These affect the well-being of PLWD, cause stress to carers and increase pressure on healthcare services.

Method: We use routinely collected in-home sensory data to monitor nocturnal activity and sleep data.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Department of Psychology & Language Sciences, University College London, London, United Kingdom.

Background: Dysphagia is an important feature of neurodegenerative diseases and potentially life-threatening in primary progressive aphasia (PPA), but remains poorly characterised in these syndromes. We hypothesised that dysphagia would be more prevalent in nonfluent/agrammatic variant (nfv)PPA than other PPA syndromes, predicted by accompanying motor features and associated with atrophy affecting regions implicated in swallowing control.

Methods: In a retrospective case-control study at our tertiary referral centre, we recruited 56 patients with PPA (21 nfvPPA, 22 semantic variant (sv)PPA, 13 logopenic variant (lv)PPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!