A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Can financial stress be anticipated and explained? Uncovering the hidden pattern using EEMD-LSTM, EEMD-prophet, and XAI methodologies. | LitMetric

Can financial stress be anticipated and explained? Uncovering the hidden pattern using EEMD-LSTM, EEMD-prophet, and XAI methodologies.

Complex Intell Systems

Department of Operations Research and Statistics, Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia.

Published: December 2022

Global financial stress is a critical variable that reflects the ongoing state of several key macroeconomic indicators and financial markets. Predictive analytics of financial stress, nevertheless, has seen very little focus in literature as of now. Futuristic movements of stress in markets can be anticipated if the same can be predicted with a satisfactory level of precision. The current research resorts to two granular hybrid predictive frameworks to discover the inherent pattern of financial stress across several critical variables and geography. The predictive structure utilizes the Ensemble Empirical Mode Decomposition (EEMD) for granular time series decomposition. The Long Short-Term Memory Network (LSTM) and Facebook's Prophet algorithms are invoked on top of the decomposed components to scrupulously investigate the predictability of final stress variables regulated by the Office of Financial Research (OFR). A rigorous feature screening using the Boruta methodology has been utilized too. The findings of predictive exercises reveal that financial stress across assets and continents can be predicted accurately in short and long-run horizons even at the time of steep financial distress during the COVID-19 pandemic. The frameworks appear to be statistically significant at the expense of model interpretation. To resolve the issue, dedicated Explainable Artificial Intelligence (XAI) methods have been used to interpret the same. The immediate past information of financial stress indicators largely explains patterns in the long run, while short-run fluctuations can be tracked by closely monitoring several technical indicators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791977PMC
http://dx.doi.org/10.1007/s40747-022-00947-8DOI Listing

Publication Analysis

Top Keywords

financial stress
24
financial
9
stress critical
8
stress
7
stress anticipated
4
anticipated explained?
4
explained? uncovering
4
uncovering hidden
4
hidden pattern
4
pattern eemd-lstm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!