Cellulase is a biocatalyst that hydrolyzes cellulosic biomass and is considered a major group of industrial enzymes for its applications. Extensive work has been done on microbial cellulase but fungi are considered a novel strain for their maximum cellulase production. Production cost and novel microbial strains are major challenges for its improvement where cheap agro wastes can be essential sources of cellulose as substrates. The researcher searches for more cellulolytic microbes from natural sources but the production level of isolated strains is comparatively low. So genetic modification or mutation can be employed for large-scale cellulase production before optimization. After genetic modification than molecular modeling can be evaluated for substrate molecule's binding affinity. In this review, we focus not only on the conventional methods of cellulase production but also on modern biotechnological approaches applied to cellulase production by a sequential study on common cellulase-producing microbes, modified microbes, culture media, carbon sources, substrate pretreatment process, and the importance of optimum pH and temperature on fermentation. In this review, we also compare different cellulase activity determination methods. As a result, this review provides insights into the interrelationship between the characteristics of optimizing different culture conditions, genetic modification, and enzyme modeling for the production of cellulase enzymes, which may aid in the advancement of large-scale integrated enzyme manufacturing of substrate-specific enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797302 | PMC |
http://dx.doi.org/10.1155/2022/4598937 | DOI Listing |
Food Chem X
January 2025
Guiyang University, Guiyang 550005, China.
This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.
Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, 67100 L'Aquila, Italy.
Arid ecosystems constitute a promising source of actinobacteria producing new bioactive molecules. This study aimed to explore different biological activities of actinomycetes isolated from the rhizosphere of L. in the Ghardaia region, Algeria.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan.
This research investigates potential mechanisms of novel magnetic field (MF) treatments in inhibiting cell-wall-degrading enzymes, aiming to reduce weight loss and preserve the post-harvest quality of tomatoes ( L.) as a climacteric fruit. The optimization of the processing parameters, including MF intensity (1, 2, 3 mT), frequency (0, 50, 100 Hz), and duration (10, 20, 30 min), was accomplished by applying an orthogonal array design.
View Article and Find Full Text PDFMicrobiome
January 2025
Faculty of Science, Dookie Campus, The University of Melbourne, Melbourne, VIC, 3647, Australia.
Background: This research aimed to investigate differences in rumen fermentation characteristics between Karakul sheep and Hu sheep reared under identical conditions. The test subjects included newborn Hu and Karakul sheep, which were monitored across three stages: stage I (Weaning period: 15 ~ 30 days), stage II (Supplementary feeding period: 31 ~ 90 days), and stage III (Complete feeding period: 91 ~ 150 days). During the supplementary feeding period, cottonseed hulls were the main roughage source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!