Information about the structure and composition of biopsy specimens can assist in disease monitoring and diagnosis. In principle, this can be acquired from Raman and infrared (IR) hyperspectral images (HSIs) that encode information about how a sample's constituent molecules are arranged in space. Each tissue section/component is defined by a unique combination of spatial and spectral features, but given the high dimensionality of HSI datasets, extracting and utilising them to segment images is non-trivial. Here, we show how networks based on deep convolutional autoencoders (CAEs) can perform this task in an end-to-end fashion by first detecting and compressing relevant features from patches of the HSI into low-dimensional latent vectors, and then performing a clustering step that groups patches containing similar spatio-spectral features together. We showcase the advantages of using this end-to-end spatio-spectral segmentation approach compared to i) the same spatio-spectral technique trained in an end-to-end manner, and ii) a method that only utilises spectral features (spectral k-means) using simulated HSIs of porcine tissue as test examples. Secondly, we describe the potential advantages/limitations of using three different CAE architectures: a generic 2D CAE, a generic 3D CAE, and a 2D convolutional encoder-decoder architecture inspired by the recently proposed UwU-net that is specialised for extracting features from HSI data. We assess their performance on IR HSIs of real colon samples. We find that all architectures are capable of producing segmentations that show good correspondence with HE stained adjacent tissue slices used as approximate ground truths, indicating the robustness of the CAE-driven spatio-spectral clustering approach for segmenting biomedical HSI data. Additionally, we stress the need for more accurate ground truth information to enable a precise comparison of the advantages offered by each architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774878 | PMC |
http://dx.doi.org/10.1364/BOE.476233 | DOI Listing |
Nanotechnology
January 2025
Changchun University of Science and Technology, 7089 Weixing Road, Chaoyang District, Changchun City, Jilin Province, Changchun, 130022, CHINA.
Quasi-two-dimensional nanosheets exhibit novel properties and promising applications in optoelectronic flexible devices. Research on non-layered III-V semiconductor nanosheets has been constrained by their covalent bonding connections. In this study, GaAs/AlGaAs heterojunction nanosheets were prepared by releasing an epitaxial layer, and their optical properties were investigated by adopting steady-state and transient absorption spectroscopy.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (A. Schwarz, A. Simon, A.M.); Siemens Healthineers AG, Forchheim, Germany (A. Schwarz, C.H., J.D., A. Simon); Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (F.K.W., S.G., M.S.); and Institut for Radiology, Pediatric and Neuroradiology, Helios Hospital, Schwerin, Germany (H.-J.R.).
Objective: Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.
Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Experimental Physics V, Department of Physics, University of Bayreuth, D-95447 Bayreuth, Germany.
Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.
Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!