Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical aberrations introduced by sample or system elements usually degrade the image quality of a microscopic imaging system. Computational adaptive optics has unique advantages for 3D biological imaging since neither bulky wavefront sensors nor complicated indirect wavefront sensing procedures are required. In this paper, a stochastic parallel gradient descent computational adaptive optics method is proposed for high-efficiency aberration correction in the fluorescent incoherent digital holographic microscope. The proposed algorithm possesses the advantage of parallelly estimating various aberrations with fast convergence during the iteration; thus, the wavefront aberration is corrected quickly, and the original object image is retrieved accurately. Owing to its high-efficiency adaptive optimization, the proposed method exhibits better performances for a 3D sample with complex and anisotropic optical aberration. The proposed method can be a powerful tool for the visualization of dynamic events that happen inside cells or thick tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774870 | PMC |
http://dx.doi.org/10.1364/BOE.470959 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!