Tumor associated macrophages (TAMs) are the mostprevalent cells recruited in the tumor microenvironment (TME). Once recruited, TAMs acquire a pro-tumor phenotype characterized by a typical morphology: ameboid in the tumor core and with larger soma and thick branches in the tumor periphery. Targeting TAMs by reverting them to an anti-tumor phenotype is a promising strategy for cancer immunotherapy. Taking advantage of Cx3cr1 heterozygous mice implanted with murine glioma GL261-RFP cells we investigated the role of Ca-activated K channel (KCa3.1) on the phenotypic shift of TAMs at the late stage of glioma growth through two-photon imaging. We demonstrated that TAMs respond promptly to KCa3.1 inhibition using a selective inhibitor of the channel (TRAM-34) in a time-dependent manner by boosting ramified projections attributable to a less hypertrophic phenotype in the tumor core. We also revealed a selective effect of drug treatment by reducing both glioma cells and TAMs in the tumor core with no interference with surrounding cells. Taken together, our data indicate a TRAM-34-dependent progressive morphological transformation of TAMs toward a ramified and anti-tumor phenotype, suggesting that the timing of KCa3.1 inhibition is a key point to allow beneficial effects on TAMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798303PMC
http://dx.doi.org/10.3389/fncel.2022.1002487DOI Listing

Publication Analysis

Top Keywords

tumor core
12
tams
9
anti-tumor phenotype
8
kca31 inhibition
8
tumor
6
morphological alterations
4
alterations tams
4
kca31
4
tams kca31
4
kca31 inhibition-by
4

Similar Publications

Incidence of adverse outcome events rises as patients with advanced illness approach end-of-life. Exposures that tend to occur near end-of-life, for example, use of wheelchair, oxygen therapy and palliative care, may therefore be found associated with the incidence of the adverse outcomes. We propose a concept of reverse time-to-death (rTTD) and its use for the time-scale in time-to-event analysis based on partial likelihood to mitigate the time-varying confounding.

View Article and Find Full Text PDF

Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.

Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.

View Article and Find Full Text PDF

Background: Metformin, the frontline treatment for diabetes, has considerable potential as an immunomodulator; however, detailed bibliometric analyses on this subject are limited.

Methods: This study extracted 640 relevant articles from the Web of Science (WOS) Core Collection and conducted visual analyses using Microsoft Excel, VOSviewer, and CiteSpace.

Results: The findings showed that research on the immunomodulatory function of metformin has grown steadily since 2017, with China and the United States being the leading contributors.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of thes most prevalent malignant tumors worldwide. Current therapeutic strategies for CRC have limitations, while nanomaterials show significant potential for diagnosing and treating CRC. This study utilizes bibliometric analysis to evaluate the current status and trends in this field.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is definitively diagnosed by systematic prostate biopsy (SBx) with 13 cores. This method, however, can increase the risk of urinary retention, infection and bleeding due to the excessive number of biopsy cores.

Methods: We retrospectively analyzed 622 patients who underwent SBx with prostate multiparametric MRI (mpMRI) from two centers between January 2014 to June 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!