The morphology and composition of clasts have the potential to reveal the nature and extent of erosional processes acting in a region. Dense accumulations of granule- to pebble-sized clasts covering the ground throughout the Glen Torridon region of Gale crater on Mars were studied using data acquired by the Mars Science Laboratory Curiosity rover between sols 2300 and 2593. In this study, measurements of shape, size, texture, and elemental abundance of unconsolidated granules and pebbles within northern Glen Torridon were compiled. Nine primary clast types were identified through stepwise hierarchical clustering, all of which are sedimentary and can be compositionally linked to local bedrock, suggesting relatively short transport distances. Several clast types display features associated with fragmentation along bedding planes and existing cracks in bedrock. These results indicate that Glen Torridon clasts are primarily the product of in-situ physical weathering of local bedrock.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788136 | PMC |
http://dx.doi.org/10.1029/2021JE007095 | DOI Listing |
The diversity and abundance of diagenetic textures observed in sedimentary rocks of the clay-sulfate transition recorded in the stratigraphic record of Gale crater are distinctive within the rover's traverse. This study catalogs all textures observed by the MAHLI instrument, including their abundances, morphologies, and cross-cutting relationships in order to suggest a paragenetic sequence in which multiple episodes of diagenetic fluid flow were required to form co-occurring color variations, pits, and nodules; secondary nodule populations; and two generations of Ca sulfate fracture-filling vein precipitation. Spatial heterogeneities in the abundance and diversity of these textures throughout the studied stratigraphic section loosely correlate with stratigraphic unit, suggesting that grain size and compaction controls on fluid pathways influenced their formation; these patterns are especially prevalent in the Pontours member, where primary stratigraphy is entirely overprinted by a nodular fabric, and the base of the stratigraphic section, where increased textural diversity may be influenced by the underlying less permeable clay-bearing rocks of the Glen Torridon region.
View Article and Find Full Text PDFJ Geophys Res Planets
December 2024
Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA.
The rover explored the region between the orbitally defined phyllosilicate-bearing Glen Torridon trough and the overlying layered sulfate-bearing unit, called the "clay-sulfate transition region." Samples were drilled from the top of the fluviolacustrine Glasgow member of the Carolyn Shoemaker formation (CSf) to the eolian Contigo member of the Mirador formation (MIf) to assess in situ mineralogical changes with stratigraphic position. The Sample Analysis at Mars-Evolved Gas Analysis (SAM-EGA) instrument analyzed drilled samples within this region to constrain their volatile chemistry and mineralogy.
View Article and Find Full Text PDFThe Mars Science Laboratory rover, , explored the clay mineral-bearing Glen Torridon region for 1 Martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition during the Hesperian era. roved 5 km in total throughout Glen Torridon, from the Vera Rubin ridge to the northern margin of the Greenheugh pediment.
View Article and Find Full Text PDFJ Geophys Res Planets
November 2022
Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology MA Cambridge USA.
The morphology and composition of clasts have the potential to reveal the nature and extent of erosional processes acting in a region. Dense accumulations of granule- to pebble-sized clasts covering the ground throughout the Glen Torridon region of Gale crater on Mars were studied using data acquired by the Mars Science Laboratory Curiosity rover between sols 2300 and 2593. In this study, measurements of shape, size, texture, and elemental abundance of unconsolidated granules and pebbles within northern Glen Torridon were compiled.
View Article and Find Full Text PDFJ Geophys Res Planets
September 2022
Los Alamos National Laboratory Los Alamos NM USA.
Between January 2019 and January 2021, the Mars Science Laboratory team explored the Glen Torridon (GT) region in Gale crater (Mars), known for its orbital detection of clay minerals. Mastcam, Mars Hand Lens Imager, and ChemCam data are used in an integrated sedimentological and geochemical study to characterize the Jura member of the upper Murray formation and the Knockfarril Hill member of the overlying Carolyn Shoemaker formation in northern GT. The studied strata show a progressive transition represented by interfingering beds of fine-grained, recessive mudstones of the Jura member and coarser-grained, cross-stratified sandstones attributed to the Knockfarril Hill member.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!