Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014-2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788870PMC
http://dx.doi.org/10.1007/s11042-022-14305-wDOI Listing

Publication Analysis

Top Keywords

machine learning
8
deep learning
8
detection classification
8
classification multiple
8
multiple diseases
8
medical
5
detection
5
learning deep
4
learning
4
learning approach
4

Similar Publications

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

Application of Machine Learning to Predict CO Emissions in Light-Duty Vehicles.

Sensors (Basel)

December 2024

Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.

View Article and Find Full Text PDF

Real-Time Freezing of Gait Prediction and Detection in Parkinson's Disease.

Sensors (Basel)

December 2024

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Freezing of gait (FOG) is a walking disturbance that can lead to postural instability, falling, and decreased mobility in people with Parkinson's disease. This research used machine learning to predict and detect FOG episodes from plantar-pressure data and compared the performance of decision tree ensemble classifiers when trained on three different datasets. Dataset 1 ( = 11) was collected in a previous study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!