Ocean worlds such as Europa and Enceladus are high priority targets in the search for past or extant life beyond Earth. Evidence of life may be preserved in samples of surface ice by processes such as deposition from active plumes, hydrofracturing, or thermal convection. Terrestrial life produces unique distributions of organic molecules that translate into recognizable biosignatures. Identification and quantification of these organic compounds can be achieved by separation science such as capillary electrophoresis coupled to mass spectrometry (CE-MS). However, the data generated by such an instrument can be multiple orders of magnitude larger than what can be transmitted back to Earth during an ocean world's mission. This requires onboard science data analysis capabilities that summarize and prioritize CE-MS observations with limited computational resources. In response, the autonomous capillary electrophoresis mass-spectra examination (ACME) onboard science autonomy system was created for application to the ocean world's life surveyor (OWLS) instrument suite. ACME is able to compress raw mass spectra by two to three orders of magnitude while preserving most of its scientifically relevant information content. This summarization is achieved by the extraction of raw data surrounding autonomously identified ion peaks and the detection and parameterization of unique background regions. Prioritization of the summarized observations is then enabled by providing estimates of scientific utility, including presence of key target compounds, and the uniqueness of an observation relative to previous observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787773PMC
http://dx.doi.org/10.1029/2022EA002247DOI Listing

Publication Analysis

Top Keywords

mass-spectra examination
8
ocean worlds
8
life surveyor
8
capillary electrophoresis
8
orders magnitude
8
ocean world's
8
onboard science
8
life
5
autonomous mass-spectra
4
ocean
4

Similar Publications

Optimization of headspace high-capacity tool coupled to two-dimensional gas chromatography-mass spectrometry for mapping the volatile organic compounds of raw pistachios. A proof-of-concept on the classification ability by geographic origin.

Food Chem

December 2024

Department of Chemical Pharmaceutical, and Agricultural Sciences, Via Luigi Borsari 46, 44121, University of Ferrara, Ferrara, Italy; Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium. Electronic address:

An optimized procedure for extracting and analyzing raw pistachio volatiles was developed through headspace sampling with high-capacity tools and subsequent analysis using comprehensive two-dimensional gas chromatography coupled with mass spectrometry. The examination of 18 pistachio samples belonging to different geographic areas led to the identification of a set of 99 volatile organic compounds (VOCs). Molecules were putatively identified using linear retention index, mass spectra similarity, and two-dimensional plot location.

View Article and Find Full Text PDF

Sequential window acquisition of all theoretical fragment ion spectra (SWATH) is a type of high-resolution mass spectrometry that uses data-independent acquisition. Compared with more targeted acquisition schemes, the power behind this data-independent acquisition technique comes from its ability to mitigate interferences via the use of SWATH acquisition windows (Q1 quadrupole isolation windows) while still obtaining all accurate mass information. However, consistent with high-resolution mass spectrometry techniques, its routine and high throughput implementation in forensic toxicology is limited due to the complex processing power required to effectively manage the large amount of acquired data.

View Article and Find Full Text PDF

Background: The precision and accuracy of mass spectrometry (MS) made it a fundamental tool in anti-doping analysis. High-resolution (HR) mass spectrometers significantly improved compound identification. This study systematically analyzes data from an athlete (Subject 1) who tested positive for meldonium and compares it with data from a healthy volunteer (Subject 2) to examine the correctness of the doping verdict.

View Article and Find Full Text PDF

Nyctanthes arbor-tristis bioactive extract ameliorates LPS-induced inflammation through the inhibition of NF-κB signalling pathway.

J Ethnopharmacol

February 2024

Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Ethnopharmacological Relevance: Nyctanthes arbor-tristis L. is a mythical plant used in traditional Indian medicinal systems for the treatment of inflammation, rheumatoid arthritis, and pain-related responses. However, its bioactive compounds and underlying mechanism of action have not been fully elucidated.

View Article and Find Full Text PDF

Background: The nutrient medium effects on the quality of the matrix-assisted laser desorption/ionization-time-of-flight (MALDI-ToF) mass spectra. The standard library includes spectra of microorganisms of the family Mycobacteriaceae grown on the Lowenstein-Jensen and Middlebrook Media. There are new methods for culturing microorganisms from this group, including inoculation on chromogenic media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!