Contemporary analyses of insect population trends are based, for the most part, on a large body of heterogeneous and short-term datasets of diurnal species that are representative of limited spatial domains. This makes monitoring changes in insect biomass and biodiversity difficult. What is needed is a method for monitoring that provides a consistent, high-resolution picture of insect populations through time over large areas during day and night. Here, we explore the use of X-band weather surveillance radar (WSR) for the study of local insect populations using a high-quality, multi-week time series of nocturnal moth light trapping data. Specifically, we test the hypotheses that (i) unsupervised data-driven classification algorithms can differentiate meteorological and biological phenomena, (ii) the diversity of the classes of bioscatterers are quantitatively related to the diversity of insects as measured on the ground and (iii) insect abundance measured at ground level can be predicted quantitatively based on dual-polarization Doppler WSR variables. Adapting the quasi-vertical profile analysis method and data clustering techniques developed for the analysis of hydrometeors, we demonstrate that our bioscatterer classification algorithm successfully differentiates bioscatterers from hydrometeors over a large spatial scale and at high temporal resolutions. Furthermore, our results also show a clear relationship between biological and meteorological scatterers and a link between the abundance and diversity of radar-based bioscatterer clusters and that of nocturnal aerial insects. Thus, we demonstrate the potential utility of this approach for landscape scale monitoring of biodiversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9790603PMC
http://dx.doi.org/10.1002/rse2.270DOI Listing

Publication Analysis

Top Keywords

weather surveillance
8
surveillance radar
8
insect abundance
8
abundance diversity
8
insect populations
8
measured ground
8
insect
6
development unsupervised
4
unsupervised hierarchical
4
hierarchical clustering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!