Array Microcell Method (AMCM) for Serial Electroanalysis.

ChemElectroChem

Department of Chemistry, Indiana University, 800 E Kirkwood, Bloomington, 47405, Indiana (USA).

Published: March 2020

We describe a method for electrochemical measurement and synthesis based on the combination of a mobile micropipette and a microelectrode array, which we term the array microcell method (AMCM). AMCM has the ability to address single electrodes within a microelectrode array (MEA) and provides a simple, low-cost format to enable versatile electrochemical measurements. In AMCM, a droplet at the tip of a movable micropipette (inner diameter of 50 μm) functions as an electrochemical cell, in which the electrode area is defined by a microelectrode of the array. We also report carbon MEAs that are well suited for AMCM and are fabricated from pyrolyzed photoresist films (PPFs). PPF-MEAs with nominal electrode diameters of 5.5 μm are characterized by AMCM, standard macroscale electrochemical methods, and finite element modeling. The versatility of AMCM is demonstrated by measurement of single Pt microparticles and by electrodeposition of shapecontrolled Pt nanoparticles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798888PMC
http://dx.doi.org/10.1002/celc.201901976DOI Listing

Publication Analysis

Top Keywords

microelectrode array
12
array microcell
8
microcell method
8
method amcm
8
amcm
7
array
5
amcm serial
4
serial electroanalysis
4
electroanalysis describe
4
describe method
4

Similar Publications

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.

View Article and Find Full Text PDF

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Epithelial tissues in vitro undergo dynamic changes while differentiating heterogeneously on the culture substrate. This gives rise to diverse cellular arrangements which are undistinguished by conventional analysis approaches, such as transepithelial electrical resistance measurement or permeability assays. In this context, solid substrate-based systems with integrated electrodes and electrochemical impedance monitoring capability can address the limited spatiotemporal resolution of traditional porous membrane-based methods.

View Article and Find Full Text PDF

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!