A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ozone and microstructural morphological changes of tooth enamel. | LitMetric

AI Article Synopsis

  • The study investigates how ozone treatment affects tooth enamel microstructure over time, using precise measurement and observation techniques.
  • Ozone exposure for 40-50 seconds was found to significantly improve the micro-hardness of enamel and achieve a high remineralization rate.
  • The findings suggest that ozone therapy could serve as a promising less invasive approach for treating cavities and providing antimicrobial benefits in dentistry.

Article Abstract

The paper aims to study the impact of ozone (O3) treatment on the microstructural changes of the tooth enamel after the treatment at different time intervals. The ozonation was performed with gaseous O3 produced by HealOzone X4, the demineralization level was measured with the DiagnoDent Pen 2190 device, and the microstructure changes of enamel surface were observed using scanning electron microscopy (SEM) analysis. The results showed the exposure to O3 for 40-50 seconds enhanced enamel micro-hardness and ensures a rate of remineralization between 96.82-97.38%. In conclusion, in search of new minimally invasive solutions in the treatment of caries and to offer antimicrobial support of the oral cavity, the use of O3 as an alternative therapy to classical solutions may be a viable solution in dentistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926147PMC
http://dx.doi.org/10.47162/RJME.63.3.08DOI Listing

Publication Analysis

Top Keywords

changes tooth
8
tooth enamel
8
ozone microstructural
4
microstructural morphological
4
morphological changes
4
enamel
4
enamel paper
4
paper aims
4
aims study
4
study impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!