Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The paper aims to study the impact of ozone (O3) treatment on the microstructural changes of the tooth enamel after the treatment at different time intervals. The ozonation was performed with gaseous O3 produced by HealOzone X4, the demineralization level was measured with the DiagnoDent Pen 2190 device, and the microstructure changes of enamel surface were observed using scanning electron microscopy (SEM) analysis. The results showed the exposure to O3 for 40-50 seconds enhanced enamel micro-hardness and ensures a rate of remineralization between 96.82-97.38%. In conclusion, in search of new minimally invasive solutions in the treatment of caries and to offer antimicrobial support of the oral cavity, the use of O3 as an alternative therapy to classical solutions may be a viable solution in dentistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9926147 | PMC |
http://dx.doi.org/10.47162/RJME.63.3.08 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!