Sulfonic Acid-Grafted Hybrid Porous Polymer Based on Double-Decker Silsesquioxane as Highly Efficient Acidic Heterogeneous Catalysts for the Alcoholysis of Styrene Oxide.

ACS Appl Mater Interfaces

International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China.

Published: February 2023

β-Alkoxyalcohols generated from epoxide ring-opening reactions are significant due to their enormous value as pharmaceutical intermediates and fine chemicals. Using a phenyl-substituted double-decker-type silsesquioxane as the precursor, a hybrid porous material (PCS-DDSQ) was synthesized through a Scholl coupling reaction with an AlCl catalyst. Then, novel excellent Brønsted acid-derived silsesquioxane solid catalysts (PCS-DDSQ-SOH-) were successfully obtained through an electrophilic aromatic substitution reaction of chlorosulfonic acid on phenyl rings of PCS-DDSQ, fully characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction, temperature-programmed desorption, water contact angle, Brunauer-Emmett-Teller model, thermogravimetric analysis, and solid-state C and Si nuclear magnetic resonance techniques. The catalytic behavior of the PCS-DDSQ-SOH- with different SOH loadings for the methanolysis of styrene oxide was compared and evaluated. The presence of SOH groups endows them with excellent catalytic abilities, achieving the highest values from PCS-DDSQ-SOH-1 (the acid site of its catalyst is 1.84 mmol/g) as 99% conversion and 100% selectivity for the methanolysis of styrene oxide in 30 min, which shows superior catalytic properties of low dosage and high efficiency. Furthermore, the PCS-DDSQ-SOH-1 catalyst can maintain high activity and selectivity after three cycles. This study provides a feasible method for the preparation of Brønsted solid acid catalysts with different acid loadings by introducing the sulfonic group into PCS-DDSQ.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c17732DOI Listing

Publication Analysis

Top Keywords

styrene oxide
12
hybrid porous
8
methanolysis styrene
8
sulfonic acid-grafted
4
acid-grafted hybrid
4
porous polymer
4
polymer based
4
based double-decker
4
double-decker silsesquioxane
4
silsesquioxane highly
4

Similar Publications

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Dual single-atom catalysts have attracted considerable research interest due to their higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). We pioneered the one-step synthesis of sheets copper-cobalt graphitic carbon nitride dual single-atom (S-Cu/Co-g-C3N4) using folding fan-shaped aluminum foil as a template, and used them as catalysts in the epoxidation of styrene respectively. Through XAFS(X-ray Absorption Fine Structure) and other characterizations, it is found that Cu and Co single atoms are stabilized separately on g-C3N4 via coordination with nitrogen (N), hindered the ordered growth of sheets, and formed more pore structures, which not only increased more catalytically active sites, but also effectively prevented the flakes re-aggregate during the catalytic process.

View Article and Find Full Text PDF

The dynamic control of chiral (enantiomeric) responses in chiral host-guest complexes through external stimuli is a significant challenge in modern chemistry for developing smart stimuli-responsive materials. Herein, we report the (chir)optical properties and chiral recognition behavior of water-soluble chiral naphthotubes () under the influence of hydrostatic pressure as an external stimulus. The hydrostatic pressure spectral profiles compared to those obtained at normal pressure revealed the dynamic behavior of under hydrostatic pressure, owing to the flexible linker.

View Article and Find Full Text PDF

Impact of microplastics on aquatic flora: Recent status, mechanisms of their toxicity and bioremediation strategies.

Chemosphere

December 2024

Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India. Electronic address:

The accumulation of microplastics (MPs) in aquatic environments has occurred pervasively. The MPs affect almost all the aquatic plants including the aquatic microorganisms, ultimately disturbing the food chain. Aquatic flora attracts MPs due to the formation of several chemical bonds and interactions, including hydrogen bonds, electrostatic, hydrophobic, and van der Waals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!