Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Streptococcus mutans is a main organism of tooth infections including tooth decay and periodontitis. The aim of this study was to assess the influence of sucrose and starch on biofilm formation and proteome profile of S. mutans ATCC 35668 strain. The biofilm formation was assessed by microtiter plating method. Changes in bacterial proteins after exposure to sucrose and starch carbohydrates were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. The biofilm formation of S. mutans was increased to 391.76% in 1% sucrose concentration, 165.76% in 1% starch, and 264.27% in the 0.5% sucrose plus 0.5% starch in comparison to biofilm formation in the media without sugars. The abundance of glutamines, adenylate kinase, and 50S ribosomal protein L29 was increased under exposure to sucrose. Upregulation of lactate utilization protein C, 5-hydroxybenzimidazole synthase BzaA, and 50S ribosomal protein L16 was formed under starch exposure. Ribosome-recycling factor, peptide chain release factor 1, and peptide methionine sulfoxide reductase MsrB were upregulated under exposure to sucrose in combination with starch. The results demonstrated that the carbohydrates increase microbial pathogenicity. In addition, sucrose and starch carbohydrates can induce biofilm formation of S. mutans via various mechanisms such as changes in the expression of special proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.2442 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!