Background: Crops are under constant pressure due to global warming, which unfolds at a much faster pace than their ability to adapt through evolution. Agronomic traits are linked to cytoplasmic-nuclear genome interactions. It thus becomes important to understand the influence exerted by the organelles on gene expression under heat stress conditions and profit from the available genetic diversity. Maize (Zea mays) cytolines allow us to investigate how the gene expression changes under heat stress conditions in three different cytoplasmic environments, but each having the same nucleus. Analyzing retrograde signaling in such an experimental set-up has never been done before. Here, we quantified the response of three cytolines to heat stress as differentially expressed genes (DEGs), and studied gene expression patterns in the context of existing polymorphism in their organellar genomes.

Results: Our study unveils a plethora of new genes and GO terms that are differentially expressed or enriched, respectively, in response to heat stress. We report 19,600 DEGs as responding to heat stress (out of 30,331 analyzed), which significantly enrich 164 GO biological processes, 30 GO molecular functions, and 83 GO cell components. Our approach allowed for the discovery of a significant number of DEGs and GO terms that are not common in the three cytolines and could therefore be linked to retrograde signaling. Filtering for DEGs with a fold regulation > 2 (absolute values) that are exclusive to just one of the cytolines, we find a total of 391 up- and down-DEGs. Similarly, there are 19 GO terms with a fold enrichment > 2 that are cytoline-specific. Using GBS data we report contrasting differences in the number of DEGs and GO terms in each cytoline, which correlate with the genetic distances between the mitochondrial genomes (but not chloroplast) and the original nuclei of the cytolines, respectively.

Conclusions: The experimental design used here adds a new facet to the paradigm used to explain how gene expression changes in response to heat stress, capturing the influence exerted by different organelles upon one nucleus rather than investigating the response of several nuclei in their innate cytoplasmic environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806912PMC
http://dx.doi.org/10.1186/s12870-022-04023-8DOI Listing

Publication Analysis

Top Keywords

heat stress
28
gene expression
20
stress conditions
12
expression heat
8
influence exerted
8
exerted organelles
8
expression changes
8
cytoplasmic environments
8
retrograde signaling
8
three cytolines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!