Microbial-derived postbiotics are of interest recently due to their lower side effects than chemotherapy for cancer treatment and prevention. This study aimed to investigate the potential antigenotoxic and cytotoxic effects of cell-free-supernatant (CFS) postbiotics derived from Saccharomyces boulardii by applying SOS chromotest and MTT assay on HT-29 cell lines. Also, further cellular pathway-related assays such as cell cycle, DAPI, and annexin V-FITC/PI staining were performed. Real-time PCR was utilized to assess the expression levels of some genes involved in apoptosis. Based on the outcomes, the CFSs of S. boulardii showed significant antigenotoxic effects (20-60%, P < 0.05), decreased cell viability (with the significant IC values of 33.82, 22.68, and 27.67 µg/mL after 24, 48, and 72 h respectively), suppressed the initial (G0/G1) phase of the cell's division, influenced the nucleus of the treated cells, induced apoptosis, and increased the expression of Caspas3 and PTEN genes after 48 h, while the RelA and Bcl-XL genes indicated diminished expression in treated HT-29 cells. Consequently, CFS postbiotics of S. boulardii exhibited significant antigenotoxic and cytotoxic effects and induced apoptosis responses in HT-29 cancer cells. The results of this investigation lead us to recommend that the CFS postbiotics generated from Saccharomyces cerevisiae var. boulardii be taken into consideration as a potential anticancer agent or in the design of supplementary medications to treat and prevent colon cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-022-10039-1DOI Listing

Publication Analysis

Top Keywords

derived saccharomyces
8
cell lines
8
antigenotoxicity cytotoxic
4
cytotoxic potentials
4
potentials cell-free
4
cell-free supernatants
4
supernatants derived
4
saccharomyces cerevisiae
4
cerevisiae var
4
var boulardii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!