Background: Alzheimer's disease (AD) is a severe neurodegenerative disorder that progressively destroys cognitive skills. Exploring the mechanism underlying autophagic clearance of phosphorylated tau (p-Tau) contributes to developing novel therapeutic strategies for AD.
Methods: SH-SY5Y and HT22 cells were treated with Aβ to establish an in vitro model of AD. Cell viability was examined using CCK-8. TUNEL staining was applied to evaluate cell apoptosis. LC3 puncta was examined by IF staining. m6A modification level was evaluated through MeRIP. RNA pull-down and RIP assays were used for analyzing the interaction between IGF2BP1 and STUB1 transcripts. The binding of KDM1A to the promoter of METTL3 was confirmed by ChIP assays. APP/PS1 transgenic mice were used as an in vivo model of AD. Cognitive skills of mice were evaluated with the Morris water maze. Hippocampal damage and Aβ deposition were detected through H&E and IHC staining.
Results: Dysregulated levels of autophagy, p-Tau and m6A was observed in an in vitro model of AD. Overexpression of METTL3 or STUB1 enhanced autophagy but reduced p-Tau level in Aβ-treated cells. METTL3 stabilized STUB1 mRNA through the m6A-IGF2BP1-dependent mechanism and naturally promoted STUB1 expression, thereby enhancing autophagic p-Tau clearance in Aβ-treated cells. Overexpression of KDM1A enhanced autophagy, m6A modification and autophagic p-Tau clearance in Aβ-treated cells. KDM1A-mediated upregulation of METTL3 promoted autophagic p-Tau clearance and ameliorated Alzheimer's disease both in vitro and in vivo.
Conclusion: KDM1A-mediated upregulation of METTL3 enhances autophagic clearance of p-Tau through m6A-dependent regulation of STUB1, thus ameliorating Alzheimer's disease. Our study provides novel mechanistic insights into AD pathogenesis and potential drug targets for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2022.12.099 | DOI Listing |
Rev Neurosci
January 2025
School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China.
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland.
Scientific reports from various areas of the world indicate the potential role of tocopherols (vitamin E) in particular α-tocopherol in the prevention and therapy of Alzheimer's disease. The current phenomenon is related to the growing global awareness of eating habits and is also determined by the need to develop the prevention, management and therapy of Alzheimer's disease. This article is a review of current research on the action of the active form of vitamin E-α-tocopherol and its impact on the development and course of Alzheimer's disease.
View Article and Find Full Text PDFDrugs Aging
January 2025
Center for Clinical Management Research, VA Ann Arbor Healthcare System, NCRC 016-308E, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
Background: Central nervous system (CNS)-active polypharmacy (defined as concurrent exposure to three or more antidepressant, antipsychotic, antiseizure, benzodiazepine, opioid, or nonbenzodiazepine benzodiazepine receptor agonists) is associated with significant potential harms in persons living with dementia (PLWD).We conducted a pilot trial to assess a patient nudge intervention's implementation feasibility and preliminary effectiveness to prompt deprescribing conversations between PLWD experiencing CNS-active polypharmacy and their primary care clinicians ("clinicians").
Methods: We used the electronic health record to identify PLWD prescribed CNS-active polypharmacy in primary care clinics from two health systems.
Biogerontology
January 2025
Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures.
View Article and Find Full Text PDFNeurochem Res
January 2025
Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!