This manuscript presents the cytotoxicity, antimicrobial activity, antibiofilm preliminary properties, and associated therapy with commercial drugs using water-soluble tetra-cationic porphyrins against Pseudomonas aeruginosa. Two commercial tetra-cationic porphyrins were tested against a standard strain of P. aeruginosa 01 (PA01) in antibacterial activity assays under dark conditions and irradiated with white light for 120 min. Porphyrin 4-HTMePor showed better antimicrobial activity and was chosen for further tests. Increased minimum inhibitory concentration was observed in the presence of reactive oxygen species, suggesting that photooxidation was mediated by the singlet oxygen production. In the time-kill curve assay, 4-HTMePor inhibited bacterial growth in 90 min of irradiation. The checkerboard assay revealed synergistic interactions. Biofilms of the standard PA01 strain and three clinical isolates were formed. The biofilm destruction assay was more efficient for PA01, significantly reducing the biofilm biomass formed compared to the positive control. The associated treatment to destroy the biofilm potentiated a significant decrease in the biofilm biomass compared to the positive control. The photosensitizer did not damage human keratinocytes or mouse fibroblasts in the cytotoxicity assays, demonstrating the safety of using 4-HTMePor. Atomic force microscopy indicated lower adhesion force, higher cell wall deformation, and higher dissipation energy in the treated control compared to untreated PA01. Given our findings, it is evident that water-soluble tetra-cationic porphyrins have excellent antimicrobial and a preliminary antibiofilm activity against Gram-negative bacteria, proving to be a potential photosensitizer for clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2022.103266 | DOI Listing |
Photochem Photobiol
August 2024
Laboratory of Photobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil.
Photodynamic therapy (PDT) combines a light source, oxygen, and a photosensitizer (PS) to generate reactive oxygen species (ROS) for treating diseases. In this study, we evaluated two meso-tetra-pyridyl porphyrins with [Pd(bpy)Cl], namely 3-PdTPyP and 4-PdTPyP, as PS for PDT application. DNA interaction was assessed by spectroscopic measurements (UV-Vis and fluorescence emission), viscosity analysis, and molecular docking simulations.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
June 2024
Bioinorganic and Porphyrin Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
This manuscript presents a new report on the in vitro antimicrobial photo-inactivation of foodborne microorganisms (Salmonella spp. and Listeria monocytogenes) using tetra-cationic porphyrins. Isomeric tetra-cationic porphyrins (3MeTPyP, 4MeTPyP, 3PtTPyP, and 4PtTPyP) were tested, and antimicrobial activity assays were performed at specific photosensitizer concentrations under dark and white-light LED irradiation conditions.
View Article and Find Full Text PDFToxicology
May 2024
Laboratory of Bioinorganic and Porphyrinic Materials, Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil. Electronic address:
Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2024
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
A hitherto unknown series of air stable, π-conjugated, remarkably bent tetra-cation tetra-radical intermolecular Fe(III) μ-oxo tetranuclear complex, isolated from the dication diradical diiron(III) porphyrin dimers, has been synthesised and spectroscopically characterised along with single crystal X-ray structure determination of two such molecules. These species facilitate long-range charge/radical delocalisation through the bridge across the entire tetranuclear unit manifesting an unusually intense NIR band. Assorted spin states of Fe(III) centres are stabilised within these unique tetranuclear frameworks: terminal six-coordinate iron centres stabilise the admixed intermediate spin states while the central five-coordinate iron centres stabilise the high-spin states.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
March 2024
Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
Multidrug-resistant (MDR) microorganisms pose a threat to animal health, particularly in integumentary diseases, which can be caused by multiple organisms and often manifest as biofilms, hindering treatment effectiveness. We evaluated the antimicrobial activity of antimicrobial photodynamic therapy (aPDT) using a water-soluble tetra-cationic porphyrin (4-HTMeP) against MDR bacteria cultured in biofilm and in mono and polyculture grown on canine skin samples. We utilized 4-HTMeP porphyrin against MDR Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus pseudintermedius.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!