Assessing machine learning approaches for predicting failures of investigational drug candidates during clinical trials.

Comput Biol Med

Advanced Computation and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India. Electronic address:

Published: February 2023

One of the major challenges in drug development is having acceptable levels of efficacy and safety throughout all the phases of clinical trials followed by the successful launch in the market. While there are many factors such as molecular properties, toxicity parameters, mechanism of action at the target site, etc. that regulates the therapeutic action of a compound, a holistic approach directed towards data-driven studies will invariably strengthen the predictive toxicological sciences. Our quest for the current study is to find out various reasons as to why an investigational candidate would fail in the clinical trials after multiple iterations of refinement and optimization. We have compiled a dataset that comprises of approved and withdrawn drugs as well as toxic compounds and essentially have used time-split based approach to generate the training and validation set. Five highly robust and scalable machine learning binary classifiers were used to develop the predictive models that were trained with features like molecular descriptors and fingerprints and then validated rigorously to achieve acceptable performance in terms of a set of performance metrics. The mean AUC scores for all the five classifiers with the hold-out test set were obtained in the range of 0.66-0.71. The models were further used to predict the probability score for the clinical candidate dataset. The top compounds predicted to be toxic were analyzed to estimate different dimensions of toxicity. Apparently, through this study, we propose that with the appropriate use of feature extraction and machine learning methods, one can estimate the likelihood of success or failure of investigational drugs candidates thereby opening an avenue for future trends in computational toxicological studies. The models developed in the study can be accessed at https://github.com/gnsastry/predicting_clinical_trials.git.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106494DOI Listing

Publication Analysis

Top Keywords

machine learning
12
clinical trials
12
assessing machine
4
learning approaches
4
approaches predicting
4
predicting failures
4
failures investigational
4
investigational drug
4
drug candidates
4
clinical
4

Similar Publications

Evaluating the impact of modeling choices on the performance of integrated genetic and clinical models.

Genet Med

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:

Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.

View Article and Find Full Text PDF

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

Sci Rep

December 2024

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!