Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cell adhesive force transmitted by integrins or other mechanosensitive receptors is critical for many cellular functions and biological development. Visualization and quantification of such force have been long desired and practiced in cell mechanobiology. Here we describe integrative tension sensor (ITS), a dsDNA-based tension sensor that coverts invisible force signal to fluorescence and enables cell adhesive force imaging with ultra-sensitivity. ITS can be selectively implemented at two imaging modes: a cumulative mode that maps cell adhesive force at a high signal-to-noise ratio even with a low-end fluorescence microscope, and a real-time mode that images the force at the single molecular tension level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2851-5_14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!