Identifying vital nodes for influence maximization in attributed networks.

Sci Rep

College of Computer Science, Sichuan University, Chengdu, 610065, Sichuan, China.

Published: December 2022

AI Article Synopsis

Article Abstract

Identifying a set of vital nodes to achieve influence maximization is a topic of general interest in network science. Many algorithms have been proposed to solve the influence maximization problem in complex networks. Most of them just use topology information of networks to measure the node influence. However, the node attribute is also an important factor for measuring node influence in attributed networks. To tackle this problem, we first propose an extension model of linear threshold (LT) propagation model to simulate the information propagation in attributed networks. Then, we propose a novel community-based method to identify a set of vital nodes for influence maximization in attributed networks. The proposed method considers both topology influence and attribute influence of nodes, which is more suitable for identifying vital nodes in attributed networks. A series of experiments are carried out on five real world networks and a large scale synthetic network. Compared with CELF, IMM, CoFIM, HGD, NCVoteRank and K-Shell methods, experimental results based on different propagation models show that the proposed method improves the influence spread by [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805466PMC
http://dx.doi.org/10.1038/s41598-022-27145-3DOI Listing

Publication Analysis

Top Keywords

[formula text]
24
attributed networks
20
text] [formula
20
vital nodes
16
influence maximization
16
influence
9
identifying vital
8
nodes influence
8
maximization attributed
8
networks
8

Similar Publications

Thermal- and Rate-Regulated Fast Switchable Adhesion within Glass Transition Zone of an Epoxy Polymer.

Langmuir

January 2025

Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou 213164, People's Republic of China.

Thermoresponsive shape memory polymer (SMP) adhesives have demonstrated a high adhesion strength and large switching ratios on different substrates. However, a long response time to switch adhesion on or off is generally encountered. This study provides a fast adhesion switching method based on the temperature and rate dependence of adhesion within the glass-transition zone of an epoxy polymer.

View Article and Find Full Text PDF

The accumulation of aging cells significantly contributes to chronic inflammatory diseases such as atherosclerosis. Human carotid artery single-cell sequencing has shown that large numbers of aging foam cells are present in the plaques of human patients. Berberine (BBR) has been shown to inhibit cell senescence, however, the mechanisms involved in its treatment of atherosclerotic senescence have not yet been determined.

View Article and Find Full Text PDF

We investigate the growth of amorphous MoSi thin films using magnetron co-sputtering and optimize the growth conditions with respect to crystal structure and superconducting properties (e.g., critical temperature [Formula: see text]).

View Article and Find Full Text PDF

Improved printed circuit board defect detection scheme.

Sci Rep

January 2025

School of Computer Engineering , Jiangsu Second Normal University, Nanjing, Jiangsu, 211200, China.

In this paper, an improved printed circuit board(PCB)defect detection scheme named PD-YOLOv8 is proposed, which is specialized in the common and challenging problem of small target recognition in PCB inspection. This improved scheme mainly relies on the basic framework of YOLOv8n, and effectively enhances the detection performance of PCB small defects through multiple innovative designs. First, we incorporate the Efficient Channel Attention Network (ECANet) attention mechanism into the backbone network of YOLOv8, which improves the performance of small-target detection by adaptively enhancing the expressiveness of key features, so that the network possesses higher sensitivity and focus on tiny details in PCB images.

View Article and Find Full Text PDF

We propose a general approach to quasi-deform the Korteweg-De Vries (KdV) equation by deforming its Hamiltonian. The standard abelianization process based on the inherent sl(2) loop algebra leads to an infinite number of anomalous conservation laws, that yield conserved charges for definite space-time parity of the solution. Judicious choice of the deformed Hamiltonian yields an integrable system with scaled parameters as well as a hierarchy of deformed systems, some of which possibly are quasi-integrable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!