While Machine Learning (ML) models have been increasingly applied to a range of histopathology tasks, there has been little emphasis on characterizing these models and contrasting them with human experts. We present a detailed empirical analysis comparing expert neuropathologists and ML models at predicting IDH mutation status in H&E-stained histology slides of infiltrating gliomas, both independently and synergistically. We find that errors made by neuropathologists and ML models trained using the TCGA dataset are distinct, representing modest agreement between predictions (human-vs.-human κ = 0.656; human-vs.-ML model κ = 0.598). While no ML model surpassed human performance on an independent institutional test dataset (human AUC = 0.901, max ML AUC = 0.881), a hybrid model aggregating human and ML predictions demonstrates predictive performance comparable to the consensus of two expert neuropathologists (hybrid classifier AUC = 0.921 vs. two-neuropathologist consensus AUC = 0.920). We also show that models trained at different levels of magnification exhibit different types of errors, supporting the value of aggregation across spatial scales in the ML approach. Finally, we present a detailed interpretation of our multi-scale ML ensemble model which reveals that predictions are driven by human-identifiable features at the patch-level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805452 | PMC |
http://dx.doi.org/10.1038/s41598-022-26170-6 | DOI Listing |
Health Econ
January 2025
School of International Trade and Economics, University of International Business and Economics, Beijing, China.
While the direct health impacts of air pollution are widely discussed, its indirect effects, particularly during pandemics, are less explored. Utilizing detailed individual-level data from all designated hospitals in Wuhan during the initial COVID-19 outbreak, we examine the impact of air pollution exposure on treatment costs and health outcomes for COVID-19 patients. Our findings reveal that patients exposed more intensively to air pollution, identified by their residence in downwind areas of high-polluting enterprises, not only had worsened health outcomes but also consumed more medical resources.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 11-19, Kiel 24098, Germany.
Topological plasmonics combines principles of topology and plasmonics to provide new methods for controlling light, analogous to topological edge states in photonics. However, designing such topological states remains challenging due to the complexity of the high-dimensional design space. We present a novel method that uses supervised, physics-informed deep learning and surrogate modeling to design topological devices for desired wavelengths.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models.
View Article and Find Full Text PDFBiomed Tech (Berl)
January 2025
Department of Computer Science, 72937 Centre for Machine Learning and Intelligence (CMLI), Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.
Objectives: Diabetic retinopathy (DR) is associated with long-term diabetes and is a leading cause of blindness if it is not diagnosed early. The rapid growth of deep learning eases the clinicians' DR diagnosing procedure. It automatically extracts the features and performs the grading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!