Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale.

J Chem Phys

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Published: December 2022

Vibrational energy exchange between various degrees of freedom is critical to barrier-crossing processes in proteins. Hemeproteins are well suited for studying vibrational energy exchange in proteins because the heme group is an efficient photothermal converter. The released energy by heme following photoexcitation shows migration in a protein moiety on a picosecond timescale, which is observed using time-resolved ultraviolet resonance Raman spectroscopy. The anti-Stokes ultraviolet resonance Raman intensity of a tryptophan residue is an excellent probe for the vibrational energy in proteins, allowing the mapping of energy flow with the spatial resolution of a single amino acid residue. This Perspective provides an overview of studies on vibrational energy flow in proteins, including future perspectives for both methodologies and applications.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0116734DOI Listing

Publication Analysis

Top Keywords

vibrational energy
20
energy flow
12
flow proteins
8
energy exchange
8
ultraviolet resonance
8
resonance raman
8
energy
7
vibrational
5
proteins
5
time-resolved spectroscopic
4

Similar Publications

Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.

View Article and Find Full Text PDF

Sequential addition of cations increases photoluminescence quantum yield of metal nanoclusters near unity.

Nat Commun

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.

Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn, Ag, and Tb into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.

View Article and Find Full Text PDF

Absorption spectra of PS in the ultraviolet and infrared region.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:

The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.

View Article and Find Full Text PDF

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

Transducers used in acoustic logging while drilling (ALWD) must be mounted on a drill collar, and their radiation performance is dependent on the employed mounting method. Herein, the complex transmitting voltage response of a while-drilling (WD) monopole acoustic source was calculated through finite-element harmonic-response analysis. Subsequently, the acoustic pressure waveform radiated by the source driven by a half-sine excitation voltage signal was calculated using the complex transmitting voltage response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!