The effect of immediate environment on bond strength of different bond types-A valence bond study.

J Chem Phys

Institute for Drug Research, School of Pharmacy, Ein Kerem Campus, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel.

Published: December 2022

The ability to design catalysis largely depends on our understanding of the electrostatic effect of the surrounding on the bonds participating in the reaction. Here, we used a simplistic model of point charges (PCs) to determine a set of rules guiding how to construct PC-bond arrangement that can strengthen or weaken different chemical bonds. Using valence bond theory to calculate the in situ bond energies, we show that the effect of the PC mainly depends on the bond's dipole moment irrespective of its type (being covalent or charge shift). That is, polar bonds are getting stronger or weaker depending on the sign and location of the PC, whereas non- or weakly polar bonds become stronger or weaker depending only on the location of the PC and to a smaller extent compared with polar bonds. We also show that for polar bonds, the maximal bond strengthening and weakening effect can be achieved when the PC is placed along the bond axis, as close as possible to the more and less polarizable atom/fragment, respectively. Finally, due to the stabilizing effects of polarizability, we show that, overall, it is easier to cause bond strengthening compared with bond weakening. Particularly, for polar bonds, bond strengthening is larger than bond weakening obtained by an oppositely signed PC. These rules should be useful in the future design of catalysis in, e.g., enzyme active sites.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0130020DOI Listing

Publication Analysis

Top Keywords

polar bonds
20
bond strengthening
12
bond
10
valence bond
8
design catalysis
8
bonds stronger
8
stronger weaker
8
weaker depending
8
bond weakening
8
bonds
7

Similar Publications

Exploring Stibanyl Ligand for Accessing Arsinidene and Arsaketene Adducts, and Phosphaketene.

Inorg Chem

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

The salt metathesis reaction involving a diamine-based antimony chloride precursor with sodium arsaethynolate in the presence of PMe leads to the formation of stibanyl-functionalized PMe-arsinidene (). Detailed analyses through single-crystal X-ray diffraction and density functional theory of confirm the presence of covalent Sb-As bonds and reveal its polarized nature with a multiple-bond character. In contrast to the formation of complex , substituting PMe with xylyl isocyanide or 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene () produces an isocyanide-arsinidene adduct () and an -arsaketene complex (), respectively.

View Article and Find Full Text PDF

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.

View Article and Find Full Text PDF

Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.

View Article and Find Full Text PDF

Leveraging Multivalent Assembly towards High-Temperature Liquid-Phase Phosphorescence.

Angew Chem Int Ed Engl

January 2025

Ningbo Institute of Materials Technology and Engineering CAS: Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, CHINA.

High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!