The ammonia oxidation process driven by microorganisms is an essential source of nitrous oxide (NO) and nitric oxide (NO) emissions. However, few evaluations have been performed on the changes in the community structure and abundance of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under substituting portion of chemical fertilizers with organic manure (organic substitution) and their relative contribution to the ammonia oxidation process. Here, five long-term fertilization strategies were applied in field (SN: synthetic fertilizer application; OM: organic manure; M1N1: substituting 50 % of chemical N fertilizer with organic manure; M1N4: substituting 20 % of chemical N fertilizer with organic manure; and CK: no fertilizer). We investigated the response characteristics of AOB and AOA community structures by selective inhibitor shaking assays and high-throughput sequencing and further explained their relative contribution to the ammonia oxidation process during three consecutive years of vegetable production. Compared to SN and M1N4, the potential of ammonia oxidation (PAO) was significantly reduced by 26.4 % and 22.3 % in OM and 9.5 % and 4.4 % in M1N1, resulting in NO reductions of 38.9 % and 30.8 % (OM) and 31.2 % and 21.1 % (M1N1), respectively, and NO reductions of 45.0 % and 34.1 % (OM) and 40.1 % and 28.3 % (M1N1). RDA and correlation analyses showed that the soil organic carbon and ammonium nitrogen content increased while AOB gene abundance and diversity significantly decreased with increasing organic replacement ratio; however, the relative abundance of Nitrosomonas in AOB increased in OM and M1N1, which further demonstrates that AOB are the main driver in vegetable soils. Therefore, the appropriate proportion of organic substitution (OM and M1N1) could decrease the NO and NO emissions contributed by AOB by affecting the soil physicochemical properties and AOB community structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.161231 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!