Na1.7 Channel Blocker [Ala, Phe, Leu, Arg]GpTx-1 Attenuates CFA-induced Inflammatory Hypersensitivity in Rats via Endogenous Enkephalin Mechanism.

J Pain

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, PR China. Electronic address:

Published: May 2023

Venom-derived Na1.7 channel blockers have promising prospects in pain management. The 34-residue tarantula peptide GpTx-1 is a potent Na1.7 channel blocker. Its powerful analog [Ala, Phe, Leu, Arg]GpTx-1 (GpTx-1-71) displayed excellent Na1.7 selectivity and analgesic properties in mice. The current study aimed to elucidate the anti-hyperalgesic activities of GpTx-1-71 in inflammatory pain and reveal the underlying mechanisms. Our results demonstrated that intrathecal and intraplantar injections of GpTx-1-71 dose-dependently attenuated CFA-induced inflammatory hypersensitivity in rats. Moreover, GpTx-1-71-induced anti-hyperalgesia was significantly reduced by opioid receptor antagonists and the enkephalin antibody and diminished in proenkephalin (Penk) gene knockout animals. Consistently, GpTx-1-71 treatment increased the enkephalin level in the spinal dorsal horn and promoted the Penk transcription and enkephalin release in primary dorsal root ganglion (DRG) neurons, wherein sodium played a crucial role in these processes. Mass spectrometry analysis revealed that GpTx-1-71 mainly promoted the secretion of Met-enkephalin but not Leu-enkephalin from DRG neurons. In addition, the combination of subtherapeutic Met-enkephalin and GpTx-1-71 produced synergistic anti-hyperalgesia in CFA-induced inflammatory hypersensitivity. These findings suggest that the endogenous enkephalin pathway is essential for GpTx-1-71-induced spinal and peripheral analgesia in inflammatory pain. PERSPECTIVE: This article presents a possible pharmacological mechanism underlying Na1.7 blocker-induced analgesia in inflammatory pain, which helps us to better understand and develop venom-based painkillers for incurable pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpain.2022.12.012DOI Listing

Publication Analysis

Top Keywords

na17 channel
12
cfa-induced inflammatory
12
inflammatory hypersensitivity
12
inflammatory pain
12
channel blocker
8
[ala phe
8
phe leu
8
leu arg]gptx-1
8
hypersensitivity rats
8
endogenous enkephalin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!