The accurate mapping and assessment of groundwater vulnerability index are crucial for the preservation of groundwater resources from the possible contamination. In this research, novel intelligent predictive Machine Learning (ML) regression models of k-Neighborhood (KNN), ensemble Extremely Randomized Trees (ERT), and ensemble Bagging regression (BA) at two levels of modeling were utilized to improve DRASTIC-LU model in the Miryang aquifer located in South Korea. The predicted outputs from level 1 (KNN and ERT models) were used as inputs for ensemble bagging (BA) in level 2. The predictive groundwater pollution vulnerability index (GPVI), derived from DRASTIC-LU model was adjusted by NO-N data and was utilized as the target data of the ML models. Hyperparameters for all models were tuned using a Grid Searching approach to determine the best effective model structures. Various statistical metrics and graphical representations were used to evaluate the superior predictive performance among ML models. Ensemble BA model in level 2 was more precise than standalone KNN and ensemble ERT models in level 1 for predicting GPVI values. Furthermore, the ensemble BA model offered suitable outcomes for the unseen data that could subsequently prevent the overfitting issue in the testing phase. Therefore, ML modeling at two levels could be an excellent approach for the proactive management of groundwater resources against contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137671DOI Listing

Publication Analysis

Top Keywords

machine learning
8
groundwater vulnerability
8
levels modeling
8
groundwater resources
8
resources contamination
8
knn ensemble
8
ensemble bagging
8
drastic-lu model
8
ert models
8
ensemble model
8

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!