Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study describes developing an energy-efficient and scalable alternative to conventional non-thermal plasma systems by integrating surface dielectric barrier discharge (SDBD) and UV-C radiation sources. The unprecedented enhancement in the mineralisation rate of an azo dye (brilliant red 5B) by the hybrid reactor (photo-SDBD) is demonstrated thoroughly as a function of dye concentrations, pH, and background salts. The photo-SDBD is 1.25 - 4.9 times more energy efficient than SDBD under similar experimental conditions. The photo-SDBD could overcome the problems such as the recombination of hydroxyl radicals and scavenging of radicals by salts (NaCl, NaSO, NaCO) observed in conventional non-thermal plasma systems. The TOC and HR-MS analysis establish the complete mineralisation potential and chemical mineralisation pathway. Besides, the phytotoxicity of the treated water is tested and demonstrated its utility as a liquid fertiliser for enhanced germination of mung bean seeds. The optical emission spectroscopy measurements were performed to estimate the plasma's electron temperature (1.6 ± 0.2 eV) and density (10/m). The emission line ratio (I/I) approach is used to compare the influence of UV-C on plasma parameters in the SDBD reactor. The study opens a new pathway for developing energy-efficient and scalable plasma-assisted mineralisation of complex and emerging organic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!